Oberflächenspannung von leichtem und schwerem Wasser

J. Straub, N. Rosner und U. Grigull, München

Surface Tension of Normal and Heavy Water

Abstract. A Skeleton Table and simple interpolation equation for the surface tension of light water was developed by the Working Group III of the International Association for the Properties of Steam and is recommended as an International Standard.

The Skeleton Table is based on all known measurements of the surface tension and individual data were weighted corresponding to the accuracy of the measurements. The form of the interpolation equation is based on a physical concept. It represents an extension of van der Waals-equation, where the exponent conforms to the "Scaling Laws". In addition for application purposes simple relations for the Laplace-coefficient and for the density difference between the liquid and gaseous phases of light water are given. The same form of interpolation equation for the surface tension can be used for heavy water, for which the coefficients are given. However, this equation is based only on a single set of data.

Für schweres Wasser kann die gleiche Form der Interpolationsgleichung verwendet werden, deren Koeffizienten angegeben sind. Allerdings beruht diese Gleichung nur auf einer Messreihe.

Formelzeichen

<table>
<thead>
<tr>
<th>A</th>
<th>Oberfläche</th>
</tr>
</thead>
<tbody>
<tr>
<td>R₀</td>
<td>Koeffizient</td>
</tr>
<tr>
<td>P</td>
<td>freie Energie</td>
</tr>
<tr>
<td>S</td>
<td>Entropie</td>
</tr>
<tr>
<td>T</td>
<td>Temperatur</td>
</tr>
<tr>
<td>Tₖ</td>
<td>kritische Temperatur</td>
</tr>
<tr>
<td>U</td>
<td>innere Energie</td>
</tr>
<tr>
<td>V</td>
<td>Volumen</td>
</tr>
<tr>
<td>W</td>
<td>Arbeit</td>
</tr>
</tbody>
</table>

a, a₀ Laplace-Koeffizient
b, b₁ Koeffizient

c Koeffizient
\(g \) Erdbeschleunigung
\(\alpha \) Exponent der isochoren Wärmekapazität
\(\beta \) Exponent der Koexistenzkurve
\(\varepsilon \) Exponent des Laplace-Koeffizienten
\(\upsilon \) Exponent der Korrelationslänge
\(\mu \) Exponent der Oberflächenspannung
\(\Delta \) Exponent der Oberflächenspannung
\(\tau \) reduzierte Temperaturdifferenz
\(\frac{T_K-T}{T_K} \)

\(g \) Korrelationslänge
\(\rho \) Dichte der flüssigen Phase
\(\rho' \) Dichte der gasförmigen Phase
\(\sigma \) Koeffizient

gängen bei Rieselfilmen und Strömungen von disper-
sen Systemen notwendig. Aus diesem Grunde wurde die Oberflächenspannung von Wasser als thermody-
namische Zustandsgröße des zweiphasigen Gleich-
genommen. Für die darin enthaltene Tafel und die von Grigull und Bach [3] aufgestellte Gleichung exi-
Die Oberflächenspannung ist. Damit lautet für ein Einkomponentensystem mit Phasengrenze die Gibbs'sche Hauptgleichung
\[dU - TdS - pdV + \sigma \, dA \, , \quad (2) \]
wobei \(U \) die innere Energie, \(S \) die Entropie, \(V \) das Volumen des Gesamtsystems mit dem Druck \(p \) ist. Differenziert man Gl.(2) bei konstanter Temperatur und konstantem Volumen \((dV = 0)\) nach der Oberfläche, so ergibt sich
\[\left(\frac{\delta U}{\delta A} \right)_{T,V} = T \left(\frac{\delta S}{\delta A} \right)_{T,V} + \sigma \, . \quad (3) \]

Führt man die auf die Oberfläche bezogenen neuen Zustandsgrößen, die Oberflächenernergie \(U_{\sigma} = \left(\frac{\delta U}{\delta A} \right)_{T,V} \)
und die Oberflächenentropie \(S_{\sigma} = \left(\frac{\delta S}{\delta A} \right)_{T,V} \), ein, dann lautet Gl.(3):
\[\sigma = U_{\sigma} - T S_{\sigma} \, . \quad (5) \]
Ein Vergleich mit der Definitionsgleichung der freien Energie \(F \)
\[F = U - TS \quad (6) \]
macht deutlich, daß die Oberflächenspannung auch als freie Oberflächenenergie gemäß der Gleichung
\[\sigma = \left(\frac{\delta F}{\delta A} \right)_{T,V} \quad (7) \]
angefäßt werden kann. Das vollständige Differential der freien Energie nach Gl.(6) mit Benutzung von Gl.(2) lautet:
\[dF = -SdT - pdV + \sigma \, dA \, . \quad (8) \]

Aus der Integrabilitätsbedingung folgt durch kreuze- weises Differenzieren der rechten Seite von Gl.(8) für ein System konstanten Volumens \((dV = 0)\) eine der dritten Maxwell-Beziehung analoge Gleichung:
\[\left(\frac{\delta \sigma}{\delta T} \right)_{V,A} = - \left(\frac{\delta S}{\delta A} \right)_{T,V} = - S_{\sigma} \, . \quad (9) \]
Eliminiert man die Oberflächenentropie in Gl. (5) durch Gl. (9) erhält man die von Kelvin angegebene Beziehung:

$$\sigma = U_\sigma + T \frac{dU_\sigma}{dT}. \quad (10)$$

Die partiellen Differentiale können durch totale ersetzt werden, da im zwei-phasigen Gleichgewicht bei einer reinen Substanz nach der Phasenregel von Gibbs die Oberflächenspannung nur noch von einer Variablen - der Temperatur - abhängig sein kann. Die Differentiation der Gl. (10) nach der Temperatur ergibt die Beziehung

$$\frac{dU_\sigma}{dT} = - T \frac{d^2 U_\sigma}{dT^2}. \quad (11)$$

Aus Gl. (10 und 11) lassen sich jetzt einige Grenzbedingungen für das Temperaturverhalten am kritischen Punkt (T = T_K) und am absoluten Nullpunkt (T = 0) herleiten.

Mit Annäherung an den kritischen Punkt verschwinden die Unterschiede zwischen der flüssigen und gasförmigen Phase, so daß dort auch die Oberflächenspannung σ wie die Oberflächenenergie U_σ verschwinden müssen. Nach Gl. (10) wird für T → T_K

$$\left(\frac{d\sigma}{dT} \right)_{T \to T_K} = 0. \quad (12)$$

Am absoluten Nullpunkt hängt nach dem dritten Hauptsatz von Nernst die Systementropie nur noch von der Temperatur ab, daher kann eine isotherme Änderung der Oberfläche die Systementropie nicht mehr verändern, so daß nach Gl. (9) gelten muß

$$\left(\frac{d\sigma}{dT} \right)_{T \to 0} = 0. \quad (13)$$

Damit folgt aus Gl. (10), daß am absoluten Nullpunkt die Oberflächenspannung - die freie Oberflächenenergie - und die Oberflächenenergie gleich werden:

für T = 0 ist \(\sigma = U_\sigma \) \quad (14)

und nach Gl. (11) wird

$$\left(\frac{dU_\sigma}{dT} \right)_{T \to 0} = 0. \quad (15)$$

Die Richtigkeit der Beziehung (13) und damit folgende (14) und (15) wurde für Helium, dem einzigen Stoff, der bis in die Nähe des absoluten Nullpunktes in flüssiger Phase auftritt, mehrfach experimentell bestätigt [22, 23].

Nach diesen Ableitungen kann für eine hypothetische Substanz, die bis zum absoluten Nullpunkt flüssig bleibt, ein idealisierter Verlauf der Oberflächenspannung und der Oberflächenenergie vom absoluten Nullpunkt bis zum kritischen Punkt nach Bild 1 gezeichnet werden. Als Ergebnis dieser Betrachtung folgt die wichtige Tatsache, daß die \(\sigma \), T-Kurve mindestens einen Wendepunkt und folglich die U_σ, T-Kurve nach Gl. (11) mindestens einen Extremwert im betrachteten Temperaturbereich haben muß. Es kann jedoch aus thermodynamischen Betrachtungen allein nicht entschieden werden, ob dieser Wendepunkt der Oberflächenspannung im zwei-phasigen Gleichgewichtsgebiet zwischen Tripelpunkt und kritischem Punkt auftritt. Der einfachste Ansatz, der den σ, T-Verlauf nach Bild 1 wiedergibt, ist

$$\sigma = \sigma_0 + h [1 + b \tau^d], \quad (16)$$

wobei \(\tau = \frac{T_K - T}{T_K} \) die auf die kritische Temperatur T_K reduzierte Temperaturdifferenz ist.

an die kritische Temperatur. Da nach Gl. (12) für
\[T = T_K \]
\[\frac{d^2 \sigma}{dT^2} = 0 \]
wird, muß der Exponent \(\mu > 1 \) sein. Van der Waals leitete aus sei-ner Zustandsgleichung für \(\mu \) einen Wert von 1,5 ab, während man bei experimentellen Untersuchungen
\[1.28 \] findet. Demnach wird die Ableitung für \(T = T_K \)
\[\frac{d^2 \sigma}{dT^2} \rightarrow \infty \quad \text{und} \quad \frac{dU_\sigma}{dT} \rightarrow \infty. \]

Leider liegen nur sehr wenige Messreihen von Stoffen vor, die den ganzen Temperaturbereich vom Tripel-
punkt bis zum kritischen Punkt überdecken. Daher kann man nur mit Vorbehalt die folgende allgemeine Aussage machen, die vor allem auf der Analyse der in der Literatur bekannten Messungen und der Arbeit von Rathjen [13], [24] beruht, der an einigen Fluiden genaue Messungen der Oberflächenspannung vom Tri-
pelpunkt bis zum kritischen Punkt durchgeführt hat.

1. Messungen der Oberflächenspannung von ein-
fachen Fluiden lassen sich vom Tripelpunkt bis zum kritischen Punkt mit dem 1. Term von Gl. (16) approximieren (\(b = 0 \)). Dies bedeutet, daß der Tripel-
punkt dieser Stoffe weit rechts vom Wendepunkt \(T_W \)
der idealisierten \(\sigma \)-T-Kurve nach Bild 1 liegt.

2. Bei polaren Stoffen ist bei niedrigerer Tempe-
ratur der 2. Term von Gl. (16) nicht mehr vernach-
lässigbar. Der Tripelpunkt liegt allerdings auch noch rechts vom Wendepunkt. Dieser tritt also noch nicht im realen zweiphasigen Bereich auf.

3. Bei polaren und assoziierenden Stoffen, wie
bei Wasser, Essigsäure und den Alkoholen, liegt der Tripelpunkt links vom Wendepunkt, also im realen Bereich der Flüssigkeit. Die Untersuchungen zeigen aber, daß der Ansatz nach Gl. (16) vollauf genügt, um die Messungen approximieren zu können. Extrapo-
liert man die Gleichungen für diese Stoffe mit dem
zwischen Tripelpunkt und kritischem Punkt angenommenen Koeffizienten und Exponenten zum absoluten Nullpunkt hin, so stellt man mit Erstaunen fest, daß die ther-

Die hier gemachten Betrachtungen sind nur für
reine Flüssigkeiten im Gleichgewicht mit dem eige-
nen Dampf anwendbar. Bei Gemischen ist beispiels-
weise die Oberflächenspannung noch eine Funktion
der Konzentration. Auch der monoton abfallende Ver-
lauf der \(\sigma \)-T-Kurve ist zwar plausibel und offensicht-

Über die hier bis Gl. (15) angeführten Randbedin-

3 Das Modell von Widom

\[\sigma \sim (T_K - T)^{3/2} \]

was dem ersten Term von Gl. (16) mit \(\mu = 3/2 \) entspricht.

Van der Waals geht davon aus, daß sich die Dichte an der Phasengrenzfläche kontinuierlich ändert und sich die freie Energie in der Grenzfläche als analytische Funktion darstellen läßt. Der Dichteverlauf in der Phasengrenzfläche muß hierbei bekannt sein, oder es müssen darüber Annahmen getroffen werden, was nur in der Nähe des kritischen Punkts möglich ist.

J. Straub et al.: Oberflächenspannung von leichtem und schwerem Wasser

- Scaling Laws - darstellen, die bei analogen Zustandsvariablen von spezifischen Stoffeigenschaften nahezu unabhängig sind; man spricht von "universellen Exponenten" dieser Potenzgesetze. Diese "universele" Eigenschaft erklärt sich durch die Zunahme der Fluktuation der Dichte - allgemeiner: des Ordnungsparameters - mit Annäherung an den kritischen Punkt. Diese Fluktuationen erreichen schließlich eine örtliche Ausdehnung, die weit über die Reichweite der normalen Zwischenmolekularwechselwirkung hinausgeht, so daß die individuellen stoffspezifischen Eigenschaften zurückgedrängt werden und das Verhalten in der Umgebung des kritischen Punktes ausschließlich durch die Größe dieser Fluktuationen bestimmt wird. Die mittlere Größe dieser Fluktuation nennt man die Korrelationslänge. Innerhalb der Abmessung \(\xi \) sind die Dickefluktuationen untereinander korreliert, wogegen bei Abmessungen größer als \(\xi \) die Fluktuationen unkorreliert, d.h. statistisch unabhängig voneinander sind. Die Korrelationslänge \(\xi \) läßt sich als Potenzgesetz der Temperatur darstellen:

\[
\xi \sim (T_K - T)^{-\nu}.
\]

(18)

Der Exponent \(\nu \) wurde aus verschiedenen Lichtstreuexperimenten mehrfach zu 0,60 ± 0,04 ermittelt [27], [28].

Widom geht nun von der Überlegung aus, daß die Dicke der Phasengrenzfläche in der Nähe der kritischen Temperatur gleich oder proportional dieser Korrelationslänge werden muß. Dies wird so begründet: Nähert sich ein Fluid vom homogenen einphasigen Zustand der Koexistenzkurve, so wird deren mittlere Dichtefluktuation gleich der Dichtedifferenz zwischen den Phasen, wobei sich an der Koexistenzkurve selbst die zweite Phase aus dem Fluid auscheidet. So läßt sich die Phasengrenze als ein Ort deuten, an dem die Größe der Fluktuation gleich der Dichtedifferenz zwischen der flüssigen und gasförmigen Phase ist. Dieses Argument liefert jetzt auch die Basis für die Annahme, daß die Dicke der Phasengrenze gleich oder proportional der Korrelationslänge \(\xi \) ist.

Mit dieser Überlegung läßt sich nun eine Verbindung zur Oberflächenspannung herleiten. Die freie Energie einer Phasengrenzschicht der Fläche \(A \) ist \(\sigma \cdot A \) und das Volumen dieser Grenzschicht \(\xi \cdot A \), so daß die freie Energie auf das Volumen der Grenzschicht bezogen \(\sigma / \xi \) ist. Da auch die Divergenz der isochoren Wärmekapazität am kritischen Punkt auf die spontanen Fluktuationen zurückzuführen ist, wird auch für diese Grenzschicht die isochore Wärmekapazität divergieren, wofür man den Ansatz wählt

\[
C_v \sim (T_K - T)^{\alpha}.
\]

(19)

Aus zweifacher Integration folgt hieraus die auf das Volumen bezogene freie Energie der Grenzschicht:

\[
\sigma / \xi \sim (T_K - T)^{2 - \alpha}.
\]

(20)

Setzt man für die Oberflächenspannung den ersten Term von Gl. (16) der den asymptotischen Verlauf von \(\sigma \) mit Annäherung an den kritischen Punkt wieder gibt

\[
\sigma \sim (T_K - T)^{\mu}
\]

und für \(\xi \) Gl. (18) ein, dann folgt aus Gl. (20) ein Skalengesetz, das eine Verknüpfung der Exponenten der Potenzgesetze (18, 19 und 21) darstellt:

\[
\mu + \nu = 2 - \alpha.
\]

(22)

Diese Exponenten werden allgemein als kritische Exponenten bezeichnet, da sie den asymptotischen Verlauf der Zustandsvariablen am kritischen Punkt beschreiben. Mit der Koexistenzkurve

\[
\rho - \rho_c \sim (T_K - T)^{\delta}
\]

(23)

und der isothermen Kompressibilität

\[
\frac{1}{\rho} \left(\frac{\partial \rho}{\partial T} \right)_T \sim (T_K - T)^{-\gamma}
\]

(24)

lassen sich weitere Exponentenbeziehungen angeben, auf deren Herleitung hier verzichtet wird [29], [30]:

\[
\mu + \nu = 2 - \alpha = \gamma + 2\beta.
\]

(25)

Alle diese Exponenten können in unabhängigen Experimenten bestimmt werden, womit die hier dargestellten Beziehungen zwischen den Exponenten der Oberflächenspannung und anderen thermodynamischen...
Größen bestätigt werden. Für die kritischen Exponenten findet man nach [12], [13], [29], [30] folgende Werte:
\[\mu = 1,28 \pm 0,02, \nu = 0,60 \pm 0,04, \sigma = 0,12 \pm 0,04, \gamma = 1,18 \pm 0,03, \theta = 0,345 \pm 0,01 \] durch die sich die Skalengesetze (22) und (25) im Rahmen der experimentellen Genauigkeit bestätigen lassen. Die hier gemachten Betrachtungen sind zunächst nur für die nähere Umgebung des kritischen Punktes zutreffend. Es zeigt sich aber, daß bei einfachen Fluiden der asymptotische Ansatz für die Annäherung zum kritischen Punkt mit dem ersten Term der Gl. (16) bis zum Tripelpunkt hin verwendt werden kann. Wasser kann als assoziierender Stoff meist nicht mit üblichen Korrespondenzgesetzen beschrieben werden. So war es zunächst überraschend, daß sich, wie in- zwischen mehrfach bestätigt, auch für Wasser dieselben kritischen Exponenten wie für normale Fluide [30], [31] finden.

Der Ansatz nach Gl. (18) kann physikalisch interpretiert werden, daher ist es in jedem Fall sinnvoll, für die Temperaturabhängigkeit der Oberflächen- spannung einen Ansatz dieser Form zu wählen, wobei mangelnde oder mangelhafte Meßdaten durch eine physikalisch begründbare Funktion ersetzt werden.

4 Rahmentafel und Gleichung

Aus den gewichteten Meßwerten wurden die Parameter \(\sigma_0, b, \mu \) und \(\Delta \) nach Gl. (16) durch Minimierung der Summe der Fehlerquadratanteilsgleichungen.
\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|}
\hline
\textbf{t} & \textbf{σ} & \textbf{Toleranz} & \textbf{σ(29) - σ} & \textbf{a} \\
\hline
\textbf{°C} & \textbf{10^{-3} N/m} & \textbf{10^{-3} N/m} & \textbf{10^{-3} N/m} & \textbf{10^{-3} m} \\
\hline
0,01 & 75,64 & 0,38 & 0,01 & 2,778 \\
10 & 74,23 & 0,37 & -0,01 & 2,752 \\
20 & 72,75 & 0,36 & -0,01 & 2,726 \\
30 & 71,20 & 0,36 & 0,00 & 2,700 \\
40 & 69,60 & 0,35 & 0,00 & 2,675 \\
50 & 67,94 & 0,34 & 0,01 & 2,648 \\
60 & 66,24 & 0,33 & 0,00 & 2,621 \\
70 & 64,47 & 0,32 & 0,02 & 2,594 \\
80 & 62,67 & 0,31 & 0,01 & 2,565 \\
90 & 60,82 & 0,30 & 0,00 & 2,535 \\
100 & 58,91 & 0,29 & 0,01 & 2,504 \\
110 & 56,96 & 0,28 & 0,01 & 2,472 \\
120 & 54,96 & 0,27 & 0,01 & 2,439 \\
130 & 52,93 & 0,26 & 0,01 & 2,405 \\
140 & 50,85 & 0,25 & 0,01 & 2,369 \\
150 & 48,74 & 0,24 & 0,01 & 2,331 \\
160 & 46,58 & 0,23 & 0,02 & 2,292 \\
170 & 44,40 & 0,22 & 0,01 & 2,231 \\
180 & 42,19 & 0,22 & 0,01 & 2,209 \\
190 & 39,95 & 0,22 & 0,00 & 2,164 \\
200 & 37,69 & 0,22 & 0,01 & 2,118 \\
210 & 35,41 & 0,22 & 0,02 & 2,069 \\
220 & 33,10 & 0,22 & 0,02 & 2,018 \\
230 & 30,77 & 0,22 & 0,02 & 1,964 \\
240 & 28,42 & 0,22 & 0,02 & 1,907 \\
250 & 26,06 & 0,22 & 0,01 & 1,847 \\
260 & 23,67 & 0,21 & 0,03 & 1,782 \\
270 & 21,30 & 0,20 & 0,05 & 1,713 \\
280 & 18,94 & 0,20 & 0,06 & 1,641 \\
290 & 16,61 & 0,19 & 0,07 & 1,563 \\
300 & 14,30 & 0,18 & 0,07 & 1,479 \\
310 & 12,04 & 0,17 & 0,06 & 1,388 \\
320 & 9,81 & 0,16 & 0,07 & 1,289 \\
330 & 7,66 & 0,14 & 0,05 & 1,178 \\
340 & 5,59 & 0,12 & 0,05 & 1,050 \\
350 & 3,65 & 0,10 & 0,03 & 0,899 \\
360 & 1,90 & 0,10 & 0,01 & 0,710 \\
370 & 0,45 & 0,10 & 0,06 & 0,430 \\
374,00 & 0,00 & 0,00 & 0,0 \\
\hline
\end{tabular}
\end{table}

Der Laplace-Koeffizient (Spalte 5) wurde nach Gl. (30) berechnet mit \(\sigma \) (Spalte 2), \(\rho \), \(\rho'' \) nach [2] und
\[g = 9.80665 \text{ m/s}^2. \]

1. Spalte: Temperatur in °C
2. Spalte: Rahmentafelwert der Oberflächenspannung \(10^{-3} \text{ N/m} \)
3. Spalte: Toleranz des Rahmentafelwertes \(10^{-3} \text{ N/m} \)
4. Spalte: Differenz, Gl. (29) - Rahmentafelwert \(10^{-3} \text{ N/m} \)
5. Spalte: Laplace-Koeffizient in \(10^{-5} \text{ m} \)

Zum Vergleich wurde ein Polynom
\[\sigma = \sum_{i=1}^{n} a_i (T_K - T)^{i} \quad (26) \]

Die Bild 2. Einfluß der Entwicklungs-Koeffizienten auf die Gln. (16, 26 und 27)

\[\sigma = \frac{A_1}{1 + B(T_K - T)} + \sum_{i=2}^{5} A_i (T_K - T) \quad (27) \]

und ein Ansatz nach der Gleichung von Grigull und Bach [3]

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{image.png}
\caption{Bild 2. Einfluß der Entwicklungs-Koeffizienten auf die Gln. (16, 26 und 27)}
\end{figure}

\[\Delta \sigma = \sqrt{\sum_{i} \sigma_i^2} \quad n-1 \quad (28) \]

bei Gl. (16) mit Zunahme weiterer Termen \(b_i \) sehr schnell.

Erst mit 5 bzw. 6 Termen erreichen Gln. (27 und 26) die Standardabweichung wie Gl. (16) bei nur zwei Termen, was für die Wiedergabe der Meßwerte voll ausreichend ist. Bei dieser Betrachtung wurde der zweite Exponent in Gl. (16) \(\Delta = 1 \) angenommen.

In einer weiteren Untersuchung wurde der Exponent \(\Delta \) variiert, um seinen Einfluß auf die Standardabweichung und den ersten Exponenten \(\mu \) herauszufinden. Aus Bild 3 ist zu erkennen, daß bei dem zwei-
gliedrigen Ansatz das Minimum der Standardabweichung bei \(\Delta = 0,85 \) liegt, was einem Wert von \(\mu = 1,28 \)
entspricht. Da die Abweichung gegenüber dem ganzzahligen Wert des Exponenten $\Delta = 1$ unbedeutend ist, wurde zur Vereinfachung der Gleichung im folgenden dieser Wert beibehalten.

Nach dieser Untersuchung bestätigte sich, daß ein Ansatz nach Gl. (16) optimal die Temperaturabhängigkeit von Wasser wiedergibt, wobei mit $\Delta = 1$ Gl. (16) in die Form übergeht:

$$\sigma = \sigma_0 \cdot \tau^\mu (1 + b \cdot \tau).$$ \hspace{1cm} (29)

Hierbei ist $\tau = \frac{T_K - T}{T_K}$ mit $T_K = 647,15$ K.

Die Koeffizienten sind in ihrer Stellenzahl soweit reduziert, wie es ohne Einbuße an Genauigkeit zulässig ist.

$\sigma_0 = 235,8 \cdot 10^{-3}$ N/m

$b = -0,625$

$\mu = 1,256$

Bild 3. Einfluß des Exponenten Δ in Gl. (16) auf die Standardabweichung

Bild 4. Vergleich der Meßwerte und Gl. (29) mit den Werten der Rahmentafel (Tabelle 1)
mit g als der örtlichen Erdbeschleunigung und ρ' und ρ'' den Dichten der flüssigen und gasförmigen Phasen. Setzt man für deren Differenz am kritischen Punkt Gl. (23) und für σ Gl. (29) ein, so erhält man:

$$a^2 \sim \frac{\sigma}{g} \tau^{1 - \delta} [1 + C \cdot \tau + R(\tau)] .$$

(31)

Bei der Anpassung der Koeffizienten an die Rahmertafelwerte der Oberflächenspannung und der Dichtedifferenz an der Phasengrenze [2] zeigt sich, daß eine Restfunktion $R(\tau)$ nicht notwendig ist und ein einfacher Ansatz für die Wiedergabe genügt:

$$a^2 = a_0^2 \cdot \tau^c (1 + C \cdot \tau) .$$

(32)

mit den Koeffizienten:

$$a_0^2 = 16,6 \cdot 10^{-6} \text{ m}^2$$

$$C = -0,408$$

$$c = 0,91$$

$$T_K = 647,15 \text{ K} .$$

Die aus den Rahmertafelwerten und der Dichtedifferenz errechneten Laplace-Koeffizienten sind in Tabelle 1 eingetragen. Gl. (32) gibt diese Werte bis zu Temperaturen von 350°C mit Abweichung kleiner 0,2% wieder.

Auch für die Dichtedifferenz $\rho' - \rho''$ allein läßt sich ein zweigliedriger Potenzansatz nach Gl. (23) angeben:

$$\rho' - \rho'' = B_0 \cdot \tau^8 (1 + b_1 \cdot \tau) .$$

(33)

Mit den Koeffizienten:

$$B_0 = 1,469 \cdot 10^{-3} \text{ kg/m}^3$$

$$b_1 = -0,292$$

$$\delta = 0,348$$

ist die Abweichung im Temperaturbereich von 20 bis 370°C maximal 0,3%. Da die Dichte anomale mit dieser Gleichung nicht wiedergegeben werden kann, steigt die Abweichung bei 0°C auf 0,9% an. Bei Dichtewerten über 370°C dürfen die Rahmertafelwerte nicht genügend genau sein. Es gibt sicher genauere Gleichungen für die Dichtedifferenz, für man-

5 Laplace-Koeffizient und Dichtedifferenz von Wasser

Sehr häufig wird bei Berechnungen nicht die Oberflächenspannung selbst, sondern der Laplace-Koeffizient - wir bevorzugen die Bezeichnung Laplace-Koeffizient gegenüber der meist üblichen Laplace-Konstante - gebraucht. Er ist definiert durch die Gleichung:

$$a = \sqrt{\frac{3}{g} \frac{\sigma}{\rho' - \rho''}} .$$

(30)
che praktischen Zwecke dürfte dieser Ansatz jedoch hinreichend sein. \(\sigma_0^2 \) und \(\varepsilon \) nach Gl. (32) lassen sich natürlich über Gl. (30, 29 und 33) berechnen. Da die Gleichungen nicht untereinander korreliert, sondern jeweils den einzelnen Daten angepaßt wurden, ergeben sich geringfügige Abweichungen
\[(s_0^2 = 16.4 \times 10^{-6} \text{ m}^2; \quad \varepsilon = 0.908). \]

6 Die Oberflächenspannung von schwerem Wasser

Obwohl für schweres Wasser nur wenige Meßdaten vorhanden sind [5], [45] und nur die Meßreihe [5] bis zum kritischen Punkt reicht, wurde Gl. (16) auch hier erprobt. Mit \(\Delta = 1 \) wurden für Gl. (29) die folgenden Koeffizienten gefunden, wobei als kritische Temperatur \(T_K = 644,65 \text{ K} \) eingesetzt wurde:

\[\sigma_0 = 245.3 \times 10^{-3} \text{ N/m} \]
\[b = -0.663 \]
\[\mu = 1.27 \]

Die mittlere Standardabweichung ergibt sich hier zu
\[\Delta \sigma = 0.16 \times 10^{-3} \text{ N/m}, \] während sie bei leichtem Wasser bei \(0.06 \times 10^{-3} \text{ N/m} \) liegt, siehe Bild 2 und 3.

Diese Gleichung, wie auch eine Rahmentafel, wurden von der IAPS wegen der geringen Anzahl von Meßdaten noch nicht zum internationalen Standard erhoben.

7 Schlußbemerkung

Aus Überlegungen, die aus der phänomenologischen Thermodynamik und der "Scaling Law"-Theorie folgen, läßt sich eine einfache Gleichung für die Temperaturabhängigkeit der Oberflächenspannung angeben. Um diese für Wasser zwischen Tripelpunkt und kritischem Punkt darstellen zu können, müssen nur zwei Koeffizienten und ein Exponent an experimentelle Daten angepaßt werden. Der Exponent ist mit den "Scaling Laws" in Übereinstimmung und kann im Rahmen der experimentellen Genauigkeit als "universell" betrachtet werden.

Basis für die Gleichung bildeten alle verfügbaren Meßdaten der Oberflächenspannung, die von der Arbeitsgruppe 3 der International Association for the Properties of Steam gesammelt und in einer Rahmentafel verarbeitet wurden. Gleichung und Rahmentafel können als derzeit beste Wiedergabe der Oberflächen-

spannung von Wasser betrachtet werden; sie sind als internationaler Standard anerkannt und werden zur Benützung empfohlen. Für schweres Wasser erwies sich derselbe Gleichungstyp mit etwas unterschiedlichen Koeffizienten als geeignet.

Diese Arbeit wurde im Rahmen der "Wasser dampfforschung" vom Bundesminister für Forschung und Technologie gefördert.

Literatur

7. Vargaftik, N.B.; Voljak, L.D.; Volkov, B.N.: Determination of Surface Tension of \(H_2O \) and \(D_2O \) Near the Critical Point (Orig. russisch) Tekhnoenergetika, Vol. 20 (1973) 80

23. Zinov'eva, K.N.: The Surface Tension of Liquid He\(_3\) in the Region of Very Low Temperatures (1.0-0.35 K). JETP 2 (1955) 774-775.

Prof. Dr.-Ing. habil. J. Straub
Dipl.-Ing. N. Rosner
Prof. Dr.-Ing. U. Grigull

Lehrstuhl A für Thermodynamik
Technische Universität München
Postfach 20 24 20
8000 München 2

Eingegangen am 17. Dezember 1979