Die Eigenschaften von Wasser und Wasserdampf nach „The 1968 IFC Formulation“

U. Grigull, J. Bach und M. Reimann, München
Die Eigenschaften von Wasser und Wasserdampf nach „The 1968 IFC Formulation“

U. Grigull, J. Bach und M. Reimann, München

Abstract. This paper contains pressure-temperature diagrams for 6 properties and 16 first derivatives and combined terms for water and steam. These were calculated from a system of equations accepted by the 6th International Conference on the Properties of Steam, and called „The 1968 IFC Formulation For Scientific and General Use“. Some consequences of thermodynamic consistency, and the behaviour in the critical region and at very small pressures are discussed. Further, the kinematic viscosity and the thermal diffusivity and a relation between the dynamic viscosity and the throttling coefficient at constant enthalpy are given.

Bezeichnungen (s. auch Tabelle 1)

\[k \] Temperaturleitfähigkeit: \(k = \lambda / c_p \)
\[p \] Druck
\[r \] spezifische Verdampfungsenthalpie: \(r = h^* - h' \)
\[T \] thermodynamische oder Kelvin-Temperatur
\[t \] Celsius-Temperatur
\[\eta \] dynamische Viskosität
\[\lambda \] Wärmeleitfähigkeit
\[\nu \] kinematische Viskosität: \(\nu = \eta / \rho \)
\[\varrho \] Dichte: \(\varrho = 1 / \rho \)
\[\Delta \] Differenz der Sättigungswerte, z. B. \(\Delta h = h^* - h' \)

Tabelle 1. Dargestellte thermodynamische Größen

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Benennung</th>
<th>Symbol</th>
<th>Bemerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>spezifisches Volumen</td>
<td>(v)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>spezifische innere Energie</td>
<td>(u)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>spezifische Entropie</td>
<td>(s)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>spezifische Enthalpie</td>
<td>(h)</td>
<td>(h = u + pv)</td>
</tr>
<tr>
<td>5</td>
<td>spezifische freie Energie</td>
<td>(f)</td>
<td>(f = u - T s)</td>
</tr>
<tr>
<td>6</td>
<td>spezifische freie Enthalpie</td>
<td>(g)</td>
<td>(g = h - T s)</td>
</tr>
<tr>
<td>7</td>
<td>isobare spez, Wärme kapazität</td>
<td>(c_p)</td>
<td>(c_p = (\partial h / \partial T)_p)</td>
</tr>
<tr>
<td>8</td>
<td>isothermer Drosselkoeffizient</td>
<td>(\eta)</td>
<td>(\eta = (\partial h / \partial T)_p)</td>
</tr>
<tr>
<td>9</td>
<td>istenthalper Drosselkoeffizient</td>
<td>(\delta)</td>
<td>(\delta = (\partial h / \partial p)_{T h})</td>
</tr>
<tr>
<td>10</td>
<td>isotherme Kompressibilität</td>
<td>(\chi)</td>
<td>(\chi = - (\partial h / \partial h p){T} / (\partial h / \partial h p){h})</td>
</tr>
<tr>
<td>11</td>
<td>isentrope Kompressibilität</td>
<td>(\gamma)</td>
<td>(\gamma = - (\partial h / \partial h p){T} / (\partial h / \partial h p){h})</td>
</tr>
<tr>
<td>12</td>
<td>isobarer Ausdehnungskoeffizient</td>
<td>(\alpha)</td>
<td>(\alpha = (\partial v / \partial T)_{p} / v)</td>
</tr>
<tr>
<td>13</td>
<td>isentroper Ausdehnungskoeffizient</td>
<td>(\lambda)</td>
<td>(\lambda = (\partial v / \partial T)_{h} / v)</td>
</tr>
<tr>
<td>14</td>
<td>isochoraler Spannungskoeffizient</td>
<td>(\beta)</td>
<td>(\beta = (\partial h / \partial e)_{p} / p)</td>
</tr>
<tr>
<td>15</td>
<td>isentroper Spannungskoeffizient</td>
<td>(\beta)</td>
<td>(\beta = (\partial h / \partial e)_{h} / p)</td>
</tr>
<tr>
<td>16</td>
<td>Binnendruck</td>
<td>(p_{B})</td>
<td>(p_{B} = (\partial v / \partial e)_{B} / \rho)</td>
</tr>
<tr>
<td>17</td>
<td>Schallgeschwindigkeit</td>
<td>(a)</td>
<td>(a^{2} = - (\partial p / \partial e)_{p} = v / \gamma)</td>
</tr>
<tr>
<td>18</td>
<td>Isentropexponent</td>
<td>(\gamma)</td>
<td>(\gamma = - (\partial p / \partial h p)_{T} / \rho = a^{2} / p v)</td>
</tr>
<tr>
<td>19</td>
<td>Reifaktor</td>
<td>(z)</td>
<td>(z = p v / R T)</td>
</tr>
<tr>
<td>20</td>
<td>Verhältnis der Wärme kapazitäten</td>
<td>(\kappa)</td>
<td>(\kappa = c_{p} / c_{v} = \gamma / \gamma ')</td>
</tr>
</tbody>
</table>
| 21 | Differenz der Wärme kapazitäten | \(c_{p} - c_{v} \) | \(\gamma ' = v / T \) \(p \) \(\beta \) \(Z \)
Bild 5. Spezifische freie Energie \(f = u - Ts \).

Bild 6. Spezifische freie Enthalpie \(g = h - Ts \).

Bild 7. Isobare spez. Wärmekapazität \(c_p = (\partial h/\partial T)_p \).

Bild 8. Isochore spez. Wärmekapazität \(c_v = (\partial u/\partial T)_v \).
Bild 13. Isobarer Ausdehnungskoeffizient \(\alpha_p = (\partial v/\partial T)_p/n \).

Bild 14. Isentroper Ausdehnungskoeffizient \(\alpha_s = (\partial v/\partial T)_s/n \).

Bild 15. Isochorer Spannungskoeffizient \(\beta_0 = (\partial p/\partial T)_k/n \).

Bild 16. Isentroper Spannungskoeffizient \(\beta_s = (\partial p/\partial T)_s/n \).
Bild 17. Innendruck $p_1 = \langle \partial u/\partial v \rangle_T$.

Bild 18. Schallgeschwindigkeit $c = \langle -v^2 (\partial p/\partial v) \rangle_H$.

Bild 19. Isentropenexponent $\gamma = -v (\partial p/\partial v) / p$.

Bild 20. Realfaktor $\varepsilon = p v / RT$.
1. Dargestellte Größen

In der vorliegenden Arbeit werden 6 spezifische und 16 weitere abgeleitete oder zusammengesetzte Größen im Druckbereich von 0 bis 1000 bar und im Temperaturbereich von 0 bis 800 °C mitgeteilt. Zur einheitlichen Darstellung wurde die Druck-Temperatur-Ebene gewählt, in der die betreffende Größe als Parameter erscheint. Die Größen wurden in ihrer ursprünglichen Definition und nicht in dimensionsloser Form dargestellt, um die Benutzung zu erleichtern. Von den 168 ersten Ableitungen, die sich aus den 8 einfachen Zustandsgrößen \(p, T, v, u, s, h, f, g \) bilden lassen, wurden jene bevorzugt, die bei technischen Problemen häufiger gebraucht werden und die daher schon seit langer Zeit im Schrifttum eigene Namen tragen. Die insgesamt 22 dargestellten Größen sind in Tabelle 1 mit ihren Definitionen wiedergegeben. Da die 6 extensiven Zustandsgrößen nur als spezifische, d. h. auf die Systemmasse bezogene Größen auftreten, wird die Bezeichnung „spezifisch“ im folgenden meist weggelassen.

Die 22 Diagramme können nicht mehr physikalische Realität enthalten als die Ausgangsgleichungen der Formulation [2]. Es kann also auch nicht behauptet werden, daß sie „absolut“ richtig sind, zumal ein Vergleich mit Meßwerten deswegen nicht möglich ist, weil fast keine weiteren Meßwerte bekannt geworden sind und diejenigen, die bereits bei der Aufstellung der Formulation berücksichtigt wurden, nämlich Werte für \(v, h \) und \(c_p \), Es kann aber unterstellt werden, daß die Diagramme in allen Fällen einen plausiblen Verlauf der Zustandsgrößen zeigen. Eine Verbesserung wird vor allem durch weitere Messungen der einfachen Zustandsgrößen sowie ihrer ersten Ableitungen zu erwarten sein, z. B. der Drosselkoeffizienten oder der Schallgeschwindigkeit.

Die in Tabelle 1 aufgeführten Zustandsgrößen sind unter den dort genannten Namen wohlbekannt. Die beiden Drosselkoeffizienten \(\delta_T \) und \(\delta_h \) werden auch Joule-Thomson-Koeffizienten genannt. Zwischen dem Drosselversuch von Joule und Thompson und dem
Überströmversuch nach Joule besteht eine gewisse Analogie. Dem isothermen Drosselkoefzienten
\[
\nu_T = \left(\frac{\partial h}{\partial p} \right)_T = -c_p \delta h = v(1 - \alpha_p T)
\]
(1)
entspricht der Binnendruck oder innere Druck
\[
p_1 = \left(\frac{\partial u}{\partial v} \right)_s = -c_v \left(\frac{\partial T}{\partial v} \right)_s = p(T \beta_v - 1).
\]
(2)
Diese Größe hat ihren Namen aus der Schreibweise der Hauptgleichung
\[
T \, ds = d\mu + p \, dv = c_v \, dT + (p + p_1) \, dv,
\]
in der der rechte Term der rechten Seite als Summe aus Volumenarbeit pdv und Arbeit gegen den Binnendruck \(p_1 \, dv \) aufgefaßt werden kann. Unter Benutzung der Enthalpie \(h \) kann statt Gl. (3) auch geschrieben werden
\[
T \, ds = dh - v \, dp = c_v \, dT - (v - \delta_T) \, dp.
\]
(4)
Eine plausible Deutung ist hier nicht so einfach wie zu Gl. (3). Der Binnendruck \(p_1 \) in Bild 17 steigt von sehr kleinen Werten bei \(\approx 0 \) an zum Wert \(p_1 \approx 1500 \) bar im kritischen Punkt und erreicht im Flüssigkeitsgebiet ein Maximum von fast 8000 bar, um dann bei kleinen Temperaturen auf den ungefähren Wert von 1000 bar abzufallen. Derartige Anomalien im Flüssigkeitsgebiet werden auch bei anderen Größen beobachtet, jedoch liegen die Extremwerte meist in verschiedenen Temperaturbereichen.

Der Isentropenexponent
\[
\gamma = -\frac{v}{p} \left(\frac{\partial p}{\partial v} \right)_s = \frac{\alpha_s}{\beta_v} = \frac{1}{\beta_v} = \frac{\alpha_s}{\beta_v} = \frac{x}{\beta_T}.
\]
(5)

steht in engem Zusammenhang mit der Schallgeschwindigkeit \(a \). Bei seiner Darstellung in Bild 19 waren Glättungen der aus der Formulation [2] berechneten Werte notwendig, um einen plausible Verlauf zu erhalten. Jedoch scheint der Sattelpunkt bei \(\approx 70 \) und \(\approx 430 \) °C reell zu sein. Für das ideale Gas ist \(\gamma = \infty \), weil hier \(\alpha^2 = \infty \cdot \nu \) und \(\nu_T = 1/\nu \) gilt.

Bei der Schallgeschwindigkeit \(a \) handelt es sich um die isentrope Fortpflanzung einer kleinen Störung ohne Einfuß der Dissipation oder der Relaxation. Gemessene Werte sind gegebenenfalls auf die Frequenz Null zu extrapolieren.

2. Thermodynamische Konsistenz

Für die Neigung der Kurven des Realfaktors \(z = \text{const} \) in Bild 20 kann man schreiben
\[
\left(\frac{\partial p}{\partial T} \right)_s = \frac{p(T \beta_p - 1)}{T(p \gamma_T - 1)}.
\]
(6)

Die Bedingung \(\gamma_T = 1, p \) ist identisch mit dem Gesetz von Boyle und Mariotte \(pv = \text{const} = J(T) \).

Die Punkte in Bild 20, in denen die Kurven \(z = \text{const} \) senkrecht verlaufen, stimmen mit jenen überein, in denen in Bild 11 \(\gamma_T = 1/p \) ist. Die durch diese Punkte gelegte Kurve wird üblicherweise Boyle-Kurve genannt. Wegen der Beziehung \(\alpha_p = p \beta_p \gamma_T \) ist auf der Boyle-Kurve auch \(\alpha_p = \beta_p \), wie ein Vergleich von Bild 12 mit Bild 13 ergibt. Wegen der Beziehung \(\alpha_p / \beta_p \gamma_T \) gilt auf der Boyle-Kurve auch \(\alpha = \gamma \), wie ein Vergleich von Bild 18 mit Bild 21 ergibt. Die Bedingung \(\alpha_p = 1/\gamma_T \) entspricht dem Gesetz von Gay-Lussac \(v/T = \text{const} = f(p) \). Die Punkte in Bild 20, in denen die Kurven \(z = \text{const} \) waagerecht verlaufen, stimmen mit jenen überein, in denen in Bild 13 \(\alpha_p = 1/\gamma_T \) gilt. Die durch diese Punkte gelegte Kurve ist zugleich die Inversionskurve der Drosselkoefzienten \(\delta_T \) nach Bild 9 und \(\delta_h \) nach Bild 10, weil mit \(\alpha_p = 1/\gamma_T \) nach Gl. (1) auch \(\delta_T = \delta_h = 0 \) gilt.

Die in Bild 1 bis 22 dargestellten Zustandsgrößen kann man als skalare Ortsfunktionen der \(p, T \)-Ebene auffassen, die jedem Punkt des Feldes einen eindeutigen Wert der Zustandsgröße zuordnen. Wir betrachten als Beispiel die Enthalpie \(h(p, T) \) nach Bild 4. Einem solchen skalaren Feld \(h(p, T) \) kann man ein Vektorfeld \(grad h(p, T) \) zuordnen, dessen Feldlinien senkrecht auf den Linien \(h = \text{const} \) stehen (Bild 23). Die Komponenten des Vektors \(grad h \) sind \(c_p \) in \(T \)-Richtung und \(\delta_T \) in \(p \)-Richtung. Die Neigung der Feldlinien \(h = \text{const} \) ist \((\partial h / \partial T)_p = c_v \); \(\delta_T = \beta_T \). Da \(h(p, T) \) Potentialfunktion ist, muß gelten
\[
\text{rot grad } h = \left(\frac{\partial c_v}{\partial p} \right)_T - \left(\frac{\partial \delta_T}{\partial T} \right)_p = 0.
\]
(7)

Dasselbe Ergebnis erhält man aus der Integrabilitätsbedingung des totalen Differentials
\[
dh = \delta_T \, dp + c_p \, dT.
\]
(8)

Das Feld \(h(p, T) \) ist nach Gl. (7) zwar drehungsfrei, aber es ist nicht quellenfrei. Für die Divergenz erhält man
\[
\text{div grad } h = \left(\frac{\partial c_v}{\partial p} \right)_T + \left(\frac{\partial \delta_T}{\partial T} \right)_p = 0,
\]
(9)

weil auch \((\partial^2 h / \partial T^2) \neq 0 \) ist. Die aus den Gln. (7) und (8) folgende Bedingung
\[
\left(\frac{\partial c_v}{\partial p} \right)_T = \left(\frac{\partial \delta_T}{\partial T} \right)_p
\]
(10)
läßt sich am einfachsten an jenen Stellen von Bild 7 und Bild 9 nachprüfen, an denen beide Ableitungen in Gl. (10) Null sind. Wie auch in Bild 23 angedeutet, fällt der waagerechte Verlauf der Kurven \(\delta_T = \text{const} \) zusammen mit den senkrechten Verlauf der Kurven \(c_p = \text{const} \). Die Maxima beider Kurvenachsen liegen an verschiedenen Stellen.

Wendet man die Integrabilitätsbedingung auf das totale Differential
\[
dv = -\chi_T \, dp + \alpha_p \, dT
\]
(11)
an, so erhält man die Beziehung
\[
\left(\frac{\partial \chi_T}{\partial p} \right)_T = -\left(\frac{\partial \alpha_p}{\partial T} \right)_p.
\]
(12)
Auch diese Bedingung läßt sich aus Bild 11 und Bild 13 in der oben angegebenen Weise nachprüfen. Die Maxima beider Kurvenscharren liegen wiederum an verschiedenen Stellen.

Die vektorielle Darstellung nach Bild 23 kann zur Veranschaulichung der Diagramme beitragen. Wird die p-Komponente \(\partial p \) des Vektors \(\text{grad } h \) gleich Null, so fällt \(\text{grad } h \) mit \(\varepsilon \) zusammen und die Linie \(h = \text{const} \) verläuft senkrecht. Das ist auf der Inversions-Kurve des Joule-Thomson-Effekts der Fall.

3. Verhalten im kritischen Gebiet

Nach ihrem Verhalten im kritischen Gebiet kann man die in Bild 1 bis 22 dargestellten Größen in drei Gruppen mit folgenden Merkmalen einteilen:

1. Gruppe: Die Funktion wird im kritischen Punkt unendlich. Hierzu gehören \(\varepsilon \), \(\delta \), \(\chi \), \(\alpha \), \(\beta \), \(p_{s} \), \(\beta_{s} \), \(p_{s} \), \(\beta_{s} \), \(v \). Für die Sättigungswerte von \(g \) gilt außerdem \(\Delta g = g^{*} - g^{0} = 0 \).

Die zur ersten und zweiten Gruppe gehörenden Funktionen zeigen mit Ausnahme von \(g \) in der \(p\), \(T \)-Ebene den charakteristischen blattförmigen Verlauf um den kritischen Punkt herum, der im vorigen Abschnitt bereits für \(\varepsilon \) und \(\delta \) betrachtet wurde (vgl. Bild 23). Bei den Funktionen der dritten Gruppe interessiert besonders die Neigung der Kurve, die durch den kritischen Punkt geht.

Für die kritische Isochore kann als gesichert angesehen werden, daß im kritischen Punkt gilt

\[
\frac{dp}{dT} = \left(\frac{\partial p}{\partial T} \right)_{s} = p\beta_{s}.
\]

(13)

\[
\left(\frac{\partial p}{\partial T} \right)_{s} = \left(\frac{\partial p}{\partial T} \right)_{v} + F_{e},
\]

(14)

wenn mit \(\varepsilon \) eine beliebige Zustandsgröße bezeichnet wird. Einige Werte von \(F_{e} \) sind in Tabelle 2 eingetragen. Da \(\chi_{T} \) im kritischen Punkt unendlich wird, zeigt

Tabelle 2. Werte \(F_{e} \) nach Gl. (14)

<table>
<thead>
<tr>
<th>(e)</th>
<th>(F_{e})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u)</td>
<td>(\varepsilon_{u}p_{T}\beta_{s})</td>
</tr>
<tr>
<td>(s)</td>
<td>(\varepsilon_{s}p_{T}T\beta_{s}\chi_{T})</td>
</tr>
<tr>
<td>(h)</td>
<td>(\alpha_{h}p_{T}T\beta_{s}\chi_{T} + (p_{T}T\beta_{s}\chi_{T} - v))</td>
</tr>
<tr>
<td>(f)</td>
<td>(\varepsilon_{f}p_{T}\chi_{T})</td>
</tr>
</tbody>
</table>

Tabelle 2, daß die Neigungen der betreffenden Kurve im kritischen Punkt denen der Isochore gleichen. Das bedeutet mit anderen Worten, daß die Kurven \(u \), \(s \), \(h \) und \(f \) = const in der \(p\), \(T\)-Ebene die Dampfdruckkurve im kritischen Punkt ohne Knick fortsetzen. Die Bilder 2, 3, 4 und 5 entsprechen diesem Verlauf.

Für die freie Enthalpie \(q \) gilt die Beziehung \(\left(\frac{\partial p}{\partial T} \right)_{g} = s/v \). Die Neigung der Kurve \(g = \text{const} \) im \(p\), \(T\)-Diagramm hängt also vom willkürlich gewählten Nullpunkt der Entropie \(s \) ab.

Für die Neigungen der Kurven \(v \), \(s \) und \(h = \text{const} \) im \(p\), \(T\)-Diagramm kann man andererseits folgende Beziehungen aufstellen:

\[
\left(\frac{\partial p}{\partial T} \right)_{s} = p\beta_{s} = \frac{\alpha_{p}}{\chi_{T}} = \frac{1}{\Delta_{s}} - \frac{p}{\beta_{s}},
\]

(15)

\[
\left(\frac{\partial p}{\partial T} \right)_{h} = p\beta_{s} = \frac{\alpha_{h}}{\chi_{T}} = \frac{v}{\beta_{s}} = \frac{1}{\beta_{s} + v/c_{p}},
\]

(16)

\[
\left(\frac{\partial p}{\partial T} \right)_{f} = \frac{1}{\beta_{s}} = - \frac{c_{p}}{\Delta_{s}}.
\]

(17)

Durch Gleichsetzen dieser drei Ausdrücke entstehen die für den kritischen Punkt gültigen Beziehungen:

\[
p\beta_{v} = p\beta_{s} = \frac{\alpha_{p}}{\chi_{T}} = - \frac{c_{p}}{\beta_{s}} = \frac{1}{\Delta_{s}} - \frac{p}{\beta_{s}},
\]

(18)

Daraus lassen sich folgende weitere Grenzwerte für den kritischen Punkt ableiten:

\[
\frac{c_{p}}{\beta_{s}} = - \frac{\alpha_{p}}{\chi_{T}} = \frac{v}{\Delta_{s}},
\]

(19)

\[
\frac{d^{2}p}{dT^{2}} = \frac{vT}{\Delta_{s}},
\]

(20)

Aus der Clausius-Clapeyron-Gleichung erhält man nocheinfolgende allgemeine Beziehungen:

\[
\frac{dp}{dT} = \frac{\Delta s}{\Delta v} = \frac{r}{T} = \frac{p}{T} = \frac{\beta_{s}}{\alpha_{p}},
\]

(21)

Man kann also die dimensionslose Neigung der Dampfdruckkurve \(T(dp/dT)/p \) als das Verhältnis der Verdampfungsenthalpie \(v \) zur äußeren Verdampfungswärme \(\Delta v \) auffassen. Die dimensionslose Neigung der Isochoren \(T(dp/dT)/p \) gibt nach Gl. (13) im ganzen Bereich das Verhältnis des Gesamtdrucks \(p + p_{i} \) zum äußeren Druck \(p \) wieder. Im kritischen Punkt gilt nach Gl. (13) die Beziehung \((p + p_{i})/p = r/\alpha_{p} \), es verhält sich also der Gesamtdruck zum äußeren
Druck wie die Verdampfungsenthalpie zur äußeren Verdampfungswärme. Die oben mitgeteilten Gleichungen zeigen, daß für das Verhältnis jener Größen, die im kritischen Punkt unendlich werden, endliche Grenzwerte existieren. Die Zustandsgrößen c_p, δ_T, χ_T und x_p erreichen den Wert unendlich in der gleichen Ordnung.

In Tabelle 3 sind einige Zustandsgrößen und Grenzwerte für den kritischen Punkt von Wasser zusammengestellt.

p	$221,15$ bar
T	$647,27$ K
v	$0,005347$ m³/kg
p_1	$1500,18$ bar
$p + p_1$	$1721,33$ bar
z	$0,2330$
β_0	$0,012052$ grd⁻¹
δ_k	$0,37693$ grd/bar
$\frac{dp}{T}$	$2,6448$ bar/grd
$\frac{T}{dp}$	$7,7411$

4. Verhalten bei kleinen Drücken

Die Zustandsgleichung des idealen Gases $p v = RT$ wird üblicherweise als Grenzgesetz für reale Gase bei sehr kleinen Drücken und nicht zu niedrigen Temperaturen angesehen. Das totale Differential von $v(p, T)$ kann in der Form
\[
\begin{align*}
\frac{dv}{v} &= -\chi_T \frac{dp}{p} + \alpha_p \frac{dT}{T} \tag{22}
\end{align*}
\]
geschrieben werden. Sind gleichzeitig die Bedingungen $\chi_T = 1/p$ und $x_p = 1/T$ erfüllt, so entsteht aus Gl. (22) die Gasgleichung in differentieller Form
\[
\begin{align*}
\frac{dv}{v} &= -\frac{dp}{p} + \frac{dT}{T} \tag{23}
\end{align*}
\]

Wie Bild 11 zeigt, ist die Bedingung $\chi_T = 1/p$ in einem endlichen Druckbereich recht gut erfüllt. Die Linien $\chi_T = \text{const}$ biegen rechts der Grenzkurve scharf nach rechts ab und streben den Asymptoten $1/p$ zu. Dagegen wird nach Bild 13 der Grenzwert $x_p = 1/T$ erst für $p = 0$ erreicht. Selbst bei kleinen Drücken weicht α_p wesentlich vom Wert $1/T$ ab. Ähnliches gilt von β_v nach Bild 15.

Aus der Gasgleichung folgt u. a. auch die Bedingung $\frac{\partial s}{\partial p} |_{T = 0} = \delta_T = 0$. Wie Bild 9 zeigt, wird diese Bedingung auch für $p = 0$ nicht erfüllt. δ_T hat wie δ_s nach Bild 10 im ganzen Temperaturbereich der Diagramme für $p = 0$ durchaus endliche Werte.

Aus diesen Betrachtungen folgt, daß man den Wasser dampf im Bereich kleiner Drücke und selbst beim Druck $p = 0$ nur mit Vorbehalt als ideales Gas ansehen darf.

5. Sättigungswerte

Bezeichnet man mit $\Delta e = e^s - e'$ die Differenz der Sättigungswerte einer Zustandsgröße e im dampfförmigen (e^s) und im flüssigen Zustand (e'), so kann man für die totale Änderung von Δe längs der Grenzkurve
\[
\frac{d\Delta e}{dT} = \left(\frac{\partial \Delta e}{\partial T}\right)_p + \left(\frac{\partial \Delta e}{\partial p}\right)_T \frac{dp}{dT}
\]
\[
= \Delta \left(\frac{\partial e}{\partial p}\right)_T + \Delta \left(\frac{\partial e}{\partial T}\right)_p \frac{dp}{dT}
\tag{24}
\]
schreiben, weil die Symbole Δ und δ vertauscht werden können. Setzt man $e = g$ und beachtet, daß Δg die gesamte Sättigungsline $\Delta g = 0$, also $d\Delta g/dT = 0$ gilt, so erhält man aus Gl. (24) die Clausius-Clapeyron-Gleichung:
\[
\frac{dp}{dT} = \frac{\Delta s}{\Delta v} = \frac{r}{\Delta v'.}
\tag{25}
\]
Die partiellen Ableitungen von g sind dem totalen Differential
\[
\frac{dg}{dT} = -s \frac{dT}{T} + v \frac{dp}{dT}
\tag{26}
\]
zu entnehmen.

Setzt man $e = h$ und führt für die Verdampfungsenthalpie die Bezeichnung $\Delta h = h^s - h' = r$ ein, so erhält man aus Gl. (24)
\[
\frac{d\Delta h}{dT} = \frac{dr}{dT} = \Delta c_p + \frac{dp}{dT} \Delta \delta_T.
\tag{27}
\]
Die partiellen Ableitungen von h sind Gl. (8) zu entnehmen. Mit $\delta_T = v(1 - T x_p)$ und unter Benutzung von Gl. (25) entsteht aus Gl. (27) die Beziehung
\[
\frac{d\Delta h}{dT} = \Delta c_p + \frac{r}{T} - \frac{r}{\Delta v} \Delta \left(\frac{\partial e}{\partial T}\right)_p,
\tag{28}
\]
die unter dem Namen Clausius-Planck-Gleichung bekannt ist. Mit $e = ln v$ entsteht aus Gl. (24) die Beziehung
\[
\frac{d(e^s/e')}{dT} = \Delta x_p = \frac{dp}{dT} \cdot \Delta \chi_T.
\tag{29}
\]
Die partiellen Ableitungen sind Gl. (11) zu entnehmen. Gl. (27) und Gl. (29) wurden dazu benutzt, um die mit Hilfe der Formulation [2] berechneten Δ-Werte auf ihre Konsistenz zu prüfen. Es ist zu beachten, daß in Gl. (27) $\Delta \delta_T < 0$ im ganzen Bereich gilt, während Δc_p in Gl. (28) nur für $t < 290 \, ^{\circ}\text{C}$ negativ ist. Dagegen sind sowohl dr/dT wie $\left(\frac{\partial e}{\partial T}\right)_p / (d(e^s/e')/dT)$ im ganzen Bereich negativ.

In unmittelbarer Nähe des kritischen Punktes ergibt die Formulation keine völlig zuverlässigen Δ-Werte. Aus dem Verlauf in einigem Abstand von der kritischen Temperatur kann geschlossen werden, daß die Δ-Werte der zur ersten Gruppe (Abschnitt 3) gehörigen
Größen im kritischen Zustand sehr hohe Werte annehmen. Die Werte von \(\Delta c_p \) im kritischen Gebiet ergeben einen welligen Verlauf, jedoch zeigte sich keine Tendenz zu extrem hohen Werten. Auf die Wiedergabe der berechneten \(\Delta \)-Werte sei hier verzichtet.

6. Dynamische Viskosität und Drosselkoeffizient

Das \(p, t \)-Diagramm des isenthalpen Drosselkoeffizienten \(\delta_b \) (Bild 10) zeigt eine auffallende Ähnlichkeit mit dem Verlauf der dynamischen Viskosität \(\eta \) nach [4]. In Bild 24 sind die Werte der Rahmentafel 1964 der Viskosität mit ihren Toleranzen [4] über den aus der Formulierung [2] berechneten Werten von \(\delta_b \) für zusammengehörende Werte von \(p \) und \(t \) aufgetragen. Es ergibt sich eine nullparametrische Beziehung zwischen beiden Größen, die im Bereich \(\eta < 10^{-4} \) kg/s/m durch folgende lineare Gleichung wiedergegeben werden kann:

\[
(\eta - \eta_0) \, (\delta_b - \delta_{b0}) = C
\]

(30)

Die Konstanten haben folgende Werte:

\[
\eta_0 = 120,483 \cdot 10^{-7} \text{ kg/s/m},
\]

\[
C = 99,906 \cdot 10^{-12} \text{ grd/s},
\]

\[
\delta_{b0} = -0.11 \text{ grd/bar}.
\]

Der Wert \(\eta_0 \) stimmt fast genau mit dem Sättigungswert bei 1 bar nach [4] überein, es ist \(\eta_0 \text{bar} = 120,2 \cdot 10^{-7} \text{ kg/s/m} \). Reduziert man die linke Seite von Gl. (30) mit Hilfe der kritischen Werte, wie es erstmalig von KAMERLINGH ONNES [5] vorgeschlagen wurde, so erhält man für Wasser

\[
\frac{(\eta - \eta_0) \, (\delta_b - \delta_{b0})}{M^{1/2} \, T_k^{1/6} (R^{1/8} N_d^{1/8} p_k^{3/8})} = 0.114.
\]

(30a)

Es bedeuten \(M \) die molare Masse, \(R \) die molare Gaskonstante, \(N_d \) die Avogadro-Konstante und \(p_k \) und \(T_k \) den kritischen Druck und die kritische Temperatur. Für den Bereich \(\eta > 10^{-4} \) kg/s/m in Bild 24 läßt sich ebenfalls eine verhältnismäßig einfache Beziehung angeben, auf deren Wiedergabe hier verzichtet sei.

Eine erste Nachprüfung an etwa je 30 Meßwerten für \(\eta \) und \(\delta_b \) von Kohlendioxid ergab, daß auch hier eine nullparametrische, der Gl. (30) ähnliche Beziehung zu bestehen scheint. Über weitere Untersuchungen wird später berichtet werden.

7. Kinematische Viskosität und Temperaturleitfähigkeit

In Ergänzung der bereits früher [4] angegebenen \(p, t \)-Diagramme für die dynamische Viskosität \(\eta \), die

\[
\eta = \frac{\eta_0}{(\eta_0 + C t)}
\]

Bild 25. Kinematische Viskosität \(\nu = \eta \nu_c \). Wärmeleitfähigkeit \(\lambda \) und die Prandtlzahl \(Pr = \nu c_p / \lambda \) werden im folgenden noch die kinematische Viskosität \(\nu = \eta \nu_c \) (Bild 25) und die Temperaturleitfähigkeit \(k = \lambda \nu_c \) (Bild 26) mitgeteilt*.

* Die Bezeichnung \(k \) statt des üblichen \(e \) wurde hier gewählt, weil mit \(a \) bereits die Schallgeschwindigkeit bezeichnet ist.

Bild 26. Temperaturleitfähigkeit k = λc_p/ε - λ/ε_p.

8. Abschließende Bemerkungen

Zur Darstellung der hier mitgeteilten Zustandsgrößen und einiger anderer, auf deren Wiedergabe aus Platzgründen verzichtet wurde, waren über 500 000 Einzelwerte zu berechnen. Damit war eine vollständige Darstellung des thermodynamischen Verhaltens von Wasser und Wasserdampf möglich, die sich bewusst auf erste Ableitungen beschränkte.

Wählt man den Druck p und die thermodynamische Temperatur T als unabhängige Variable, so ist die freie Enthalpie $g(p, T) = h - Ts$ Stammfunktion aller übrigen Zustandsgrößen. Ihr vollständiges Differential lautet

$$\frac{dg}{\partial p} = v \, dp - s \, dT. \quad (31)$$

Die beiden ersten Ableitungen sind

$$\left(\frac{\partial g}{\partial p}\right)_T = v(p, T) \quad \text{und} \quad \left(\frac{\partial g}{\partial T}\right)_p = -s(p, T). \quad (32)$$

Für die drei zweiten Ableitungen erhält man

$$\left(\frac{\partial^2 g}{\partial p^2}\right)_T = \left(\frac{\partial v}{\partial p}\right)_T = -v \frac{\partial \lambda}{\partial p}, \quad (33)$$

$$\left(\frac{\partial g}{\partial p \partial T}\right)_T = \left(\frac{\partial s}{\partial T}\right)_p = v \lambda, \quad \left(\frac{\partial s}{\partial T}\right)_p = -\left(\frac{\partial s}{\partial p}\right)_T \cdot \frac{v}{T}, \quad (34)$$

$$\left(\frac{\partial^2 g}{\partial T^2}\right)_p = -\left(\frac{\partial s}{\partial T}\right)_p \cdot \frac{v}{T}. \quad (35)$$

Die Gl. (34) enthält die vierte Maxwell-Beziehung (vgl. z. B. [7]). Da die freie Enthalpie g nicht meßbar ist, muß sie aus meßbaren Größen berechnet werden. Wir wollen annehmen, daß im ganzen Bereich zuverlässigere Meßwerte von $v(p, T)$ vorliegen und daß außerdem alle bei Integrationen notwendigen Konstanten bekannt sind. Zur Berechnung der ebenfalls nicht meßbaren Entropie $s(p, T)$ braucht man dann nach Gl. (34) erste, zur Berechnung von c_p nach Gl. (35) zweite Ableitungen der Funktion $v(p, T)$. Entsprechendes gilt für alle übrigen Zustandsgrößen, die sich aus Gl. (33) bis (35) ableiten lassen.

Prüft man eine auf diese Weise aufgestellte Formulierung an zuverlässigen Meßwerten von c_p, so korrigiert man damit die zweiten Ableitungen von $v(p, T)$, die erfahrungsgemäß recht unsicher sind. Man erzielt damit bereits eine beträchtliche Verbesserung der ursprünglichen Gleichung. Hätte man außerdem Meßwerte von δr oder ε_p und von δT_r zur Verfügung, so ließen sich auch die ersten Ableitungen von $v(p, T)$ korrigieren.

Dieses Beispiel zeigt, wie notwendig neben Präzisionsmessungen von $v(p, T)$ auch die Messung von Zustandsgrößen ist, die Ableitungen von $v(p, T)$ enthalten. Allerdings ist hierbei die Auswahl nicht sehr groß. Die hier mitgeteilten Diagramme zeigen auch den zu erwartenden Wertebereich.

Da Wasser zu den stark polaren Substanzen gehört, ist die Wechselwirkung zwischen den Teilchen oder Teilchenkomplexen schwer zu beschreiben. Vielleicht können diese Diagramme auch zu einer Weiterentwicklung der Theorie der Zustandsgleichung anregen. Alle hier mitgeteilten Werte sind die derzeitigen Bestwerte nach dem heutigen Stand der Kenntnis.

Die Verfasser danken Herrn Dipl.-Ing. G. SIEBERG-REUTER für seine Mitwirkung bei der Herstellung der Diagramme.

Literatur

2. The 1968 IFC Formulation for Scientific and General Use, issued by the International Formulation Committee of the Sixth International Conference on the Properties of Steam. Available from ASME, 345 East 47th Street, New York, N. Y. 10017, USA.

Manuskript eingegangen am 21. August 1968

Printed in Germany