Natürliche Konvektion in horizontalen zylindrischen Ringspalten

Von Ulrich Grigull und Werner Hauf
Natürliche Konvektion in horizontalen zylindrischen Ringspalten*)

Von Ulrich Grigull und Werner Hauf

Zusammenfassung

Mit Hilfe eines Mach-Zehnder-Interferometers werden die Temperaturfelder im konzentrischen, waagerechten Ringspalt, der mit atmosphärischer Luft gefüllt war, sichtbar gemacht und aus diesen Feldern die lokalen und die mittleren Nusselt-Zahlen am inneren Zylinder im Bereich von $320 \leq \text{Gr}_f \leq 716\,000$ bestimmt (δ ist die Ringspaltweite). Ausserdem werden die Strömungsfelder durch Zigarettenrauch nach der Lichtschnittmethode sichtbar gemacht. Man kann für die Konvektionsbewegung drei Bereiche unterscheiden:

- den pseudo-konduktiven Bereich mit zweidimensionaler Strömung,
- den Übergangsbereich mit dreidimensionaler Strömung,
- den Bereich der ausgebildeten Konvektionsströmung.

Die örtlichen und mittleren Nusselt-Zahlen N_u als Funktion der Grashof-Zahlen Gr_f und der bezogenen Spaltweite δ/d stimmen gut mit den Ergebnissen einiger früherer Arbeiten überein und ergänzen diese auf weitere Bereiche der unabhängigen Variablen.

Formelzeichen

\(d_i \) \hspace{1cm} \text{Außendurchmesser des Innenzylinders}

\(d_o \) \hspace{1cm} \text{Innendurchmesser des Außenzylinders}

\(\delta = (d_o - d_i)/2 \) \hspace{1cm} \text{Spaltweite}

\(\delta/d_i \) \hspace{1cm} \text{relative Spaltweite}

\(L \) \hspace{1cm} \text{Länge der Meßstrecke (hier } L = 0,5 \text{m)}

\(\lambda_L \) \hspace{1cm} \text{Lichtwellenlänge (hier } \lambda_L = 0,5461 \cdot 10^{-6} \text{m)}

\(n_z \) \hspace{1cm} \text{Brechzahl in der Meßstrecke}

\(n_0 \) \hspace{1cm} \text{Brechzahl im ungestörten Feld des Vergleichsstrahls}

\(z \) \hspace{1cm} \text{Streifenzahl}

\(k \) \hspace{1cm} \text{spezifische Refraktion (hier } k = 0,1505 \text{ cm}\(^3\)/g)}

\(q \) \hspace{1cm} \text{Dichte des Mediums (hier Luft)}

\(T \) \hspace{1cm} \text{Temperatur, einem Streifen entsprechend}

\(p \) \hspace{1cm} \text{Atmosphärenendruck}

\(R \) \hspace{1cm} \text{Gaskonstante}

\((\Delta T/\Delta y)_w \) \hspace{1cm} \text{Temperaturgradient an der Wand des Innenzylinders}

\(T_m \) \hspace{1cm} \text{lineare mittlere Temperatur im Spalt}
\(\Delta \theta \) Temperaturdifferenz zwischen Innen- und Außenzyliner

g Fallbeschleunigung

\(\beta_m = 1/T_m \) Ausdehnungskoeffizient, berechnet mit der Mitteltemperatur \(T_m \)

\(\nu_m \) kinematische Viskosität bei der Temperatur \(T_m \)

\(\text{Nu}_f = (\Delta T/\Delta y)_w \cdot (\delta/\Delta \theta) \) örtliche Nusselt-Zahl, berechnet mit der Spaltweite \(\delta \)

\(\text{Gr}_f = g \beta_m \delta^3 \Delta \theta/\nu^2 \) Grashof-Zahl

\((\text{Nu}_f)_m \) mittlere Nusselt-Zahl

\((\text{Nu}_f)_c \) Nusselt-Zahl für reine Wärmeleitung im Spalt
1. **Einleitung**

Ziel der vorliegenden Versuche war die Messung der örtlichen und mittleren Wärmeübergangskoeffizienten in einem gasgefüllten, horizontalen Ringspalt und die Sichtbarmachung der Strömung. Insbesondere sollte der Einfluss der relativen Spaltweite δ / d_1 auf Wärmeübertragung und Strömungsform untersucht werden. δ ist die Spaltweite und d_1 der Außendurchmesser des Innenrohrs. Temperaturverteilung und Wärmestrom wurden mit Hilfe eines Mach-Zehnder-Interferometers bestimmt. Soweit bekannt, stellt die vorliegende Arbeit die erste interferometrische Ermittlung der örtlichen und mittleren Wärmeübertragung in diesem System dar.

Die Strömungsform wurde mit Hilfe von Zigarettenrauch nach der Lichtschnittmethode bestimmt.

2. **Versuchsmethoden und Ringspaltmodell**

a. Bestimmung der Temperaturverteilung im Ringspalt.

Das Mach-Zehnder-Interferometer [Schardin (1), Kinder (2)] zeigt in seiner Grundstellung im optisch homogenen Gesichtsfeld (also ohne beheiztes Versuchsmodell) keine Streifen. Die Streifenbreite ist unendlich. In dieser Grundstellung bedeuten in einem zweidimensionalen Temperaturfeld die Interferenzlinien Isothermen (Bild 1). Alle hier gezeigten Interferenzbilder wurden in dieser Grundstellung aufgenommen.

Mit dem Interferenzverfahren können örtliche Temperaturgradienten gemessen und daraus örtliche Nusselt-Zahlen berechnet werden, aus denen man durch Integration mittlere Nusselt-Zahlen erhält. Im Gegensatz zu kalorimetrischen
Bild 1. Interferenzbild des innen beheizten Ringspalts. Temperaturdifferenz zwischen zwei Streifen etwa 1,3 grd. \(G_\delta = 2,2 \cdot 10^4; \ \Delta \vartheta = 7,5 \text{ grd}; \ \delta/d_1 = 1,45. \)

Verfahren ist eine direkte Messung des Wärmestroms nicht erforderlich. Auch beeinflusst die Wärmestrahlung nicht die Meßergebnisse, sofern das Gas diatherman ist.

b. Strömungsbilder nach dem Lichtschnittverfahren.

Gemäß Bild 2 wird durch die Lichtquelle 1, den Kondensor 2 und den Hohlspiegcl 3 ein paralleles Lichtbündel erzeugt, das auf den Polygonspiegel 4 trifft. Dieser besteht aus 12 trapezförmigen Einzelspiegeln, die unter 45° zur Achse orientiert sind.
Bild 2. Einrichtung für die Rauchversuche.
1 Lichtquelle (Quecksilberlampe), 2 Kondensor, 3 Hohlspiegel, 4 Polygonspiegel, 5 Abschirmung, 6 Feldlinse, 7 Kamera. a geschwärzter Innenzylinder, b wassergekühltes Glasrohr, c Sonde zum Raucheinblasen, d geschwärzter Hintergrund.

Ein typisches Stromlinienbild, in achsialer Richtung aufgenommen, zeigt Bild 3.
\[\text{Gr}_\delta = 1.84 \times 10^5; \ \Delta \theta = 27.5 \text{ grd}; \ \delta/d_i = 1.0. \]

Manche Bilder wurden in radialer Richtung photographiert, um Einzelheiten der Strömung zu zeigen.

c. Versuchsapparatur.

Bei den Versuchen sollte der Fall konstanter Wandtemperatur verwirklicht werden. Der Innenzylinder bestand aus einem elektrisch beheizten dickwandigen Messingrohr (Bild 4).

Isotherme Oberfläche wurde durch Wärmeleitung in Umfangsrichtung erzeugt. Der Aussenzylinder b aus Messing trug an
Bild 4. Schnitt durch die Versuchsapparatur.
a Innenzylinder, b Aussenzylinder, c elektrische Heizung, d Isolierscheibe, e Aufhängung, f Kühlwasseranschluss, g Abschlussklappe.

seiner Aussenseite eine aufgelötete, zweigängige Spirale aus Kupferrohr, die im Gegenstrom von Kühlwasser durchflossen wurde. Der Ringspalt war beidseitig durch Klappen g aus Hartpapier abgeschlossen, die für die photographische Aufnahme durch Federdruck schnell geöffnet werden konnten. So wurde die hydrodynamische Wechselwirkung zwischen Ringspalt und Umgebung verhindert, da unmittelbar nach dem Öffnen (etwa 1/10 bis 2/10 s später) belichtet wurde. Diese Methode ist der Verwendung von Abschlussglasplatten von Interferometerqualität überlegen, da durch ungleichförmige Temperaturverteilung in diesen Platten neue Fehler auftreten können.
Die Temperaturen des Innen- und Aussenzyinders und der Umgebungsluft im Vergleichsstrahl wurden durch 9 Thermoelemente nach der Ausschlagmethode gemessen.

Für die Rauchversuche wurden dieselben Innenzyylinder wie für die Messung der Temperaturfelder benutzt. Der Aussenzyinder bestand in diesem Fall aus einem wassergekühlten Glasrohr. Die Enden des Ringspalts waren nach Bild 2 durch eine geschwärzte und eine durchsichtige Scheibe abgeschlossen.

3. Versuchsergebnisse und Auswertung
a. Versuchsbebereiche

Die relative Spaltweite des Ringspalts δ/d_i wurde durch Verwendung von drei beheizten Innen- und drei gekühlten Aussenzyldndern variiert, wie in Tafel 1 gezeigt ist.

\begin{center}
\begin{tabular}{cccc}
δ/d_i & d_i & d_o & δ \\
0,15 & 60 mm & 78 mm & 9 mm \\
0,32 & 60 & 98 & 19 \\
0,48 & 40 & 78 & 19 \\
0,55 & 60 & 126 & 33 \\
0,73 & 40 & 98 & 29 \\
1,08 & 40 & 126 & 43 \\
1,45 & 20 & 78 & 29 \\
1,95 & 20 & 98 & 39 \\
2,65 & 20 & 126 & 53 \\
\end{tabular}
\end{center}
Der Temperaturunterschied $\Delta \theta$ zwischen Innen- und Aussenzyylinder lag zwischen 5 und 60 grd. Diese Grenzen waren durch die kleinste und grösste Zahl auswertbarer Interferenzstreifen gegeben. Der Ringspalt war mit Luft von Atmosphärendruck gefüllt.

Mit diesen Werten lag die auf die Spaltweite bezogene Crashof-Zahl zwischen 320 und 716 000.

b. Auswertung der Interferenzbilder.

Die Differenz der optischen Weglängen zwischen Meßstrahl und Vergleichsstrahl hängt beim Mach-Zehnder-Interferometer [Schardin (1), Kinder (2)] gemäß folgender Beziehung von der Streifenzahl z ab:

\[z \lambda_L = \int_0^L n_o \, dx - \int_0^L n_z \, dx \quad (1) \]

Es bedeuten
- λ_L Lichtwellenlänge, L Länge der Versuchsstrecke
- x Längenkoordinate in Richtung des Lichtstrahls
- n_z Brechzahl im Modell an der betrachteten Stelle
- n_o Brechzahl im ungestörten Vergleichsstrahl.

In Gl. (1) ist die Ablenkung der Lichtstrahlen im Modell als vernachlässigbar vorausgesetzt. Wenn die Brechzahl sich nur senkrecht zum Lichtstrahl ändert, also keine Funktion von x ist, kann man vereinfacht schreiben:

\[z \lambda_L = (n_o - n_z) \, L \quad (2) \]
In unserem Falle geht der Vergleichsstrahl durch ungestörte atmosphärische Luft mit konstanter Brechzahl, für die die Beziehung

\[(n - 1)/\varrho = 3 k/2\]

(3)
gilt, wenn \(\varrho\) die Dichte und \(k\) die spezifische Refraktion bedeutet. \(k\) kann im verwendeten Meßbereich als konstant angenommen werden.

Aus Gl.(3) und der Gasgleichung \(\varrho/\varrho = RT\) erhält man folgende Beziehung für den Interferenzstreifen mit der Streifenzahl \(z\) und die zugehörige Temperatur \(T_z\):

\[n_z - 1 = 3 k p/2 RT_z\]

(4).

Für den benachbarten Streifen mit der Streifenzahl \(z - 1\) und der zugehörigen Temperatur \(T_{z-1}\) gilt entsprechend:

\[n_{z-1} - 1 = 3 kp/2 RT_{z-1}\]

(5).

Der Systemdruck \(p\) ist konstant. Nach Gl.(2) ist die Differenz der Brechzahlen \(n_z - n_{z-1} = \lambda_L/L\). Damit wird die Temperaturdifferenz \(\Delta T\) zwischen zwei benachbarten Streifen

\[\Delta T = T_{z-1} - T_z = \frac{2 \lambda_L R}{3 L p k} T_{z-1} T_z\]

\[= \frac{2 \lambda_L R T_z^2}{3 L p k}\]

(6)
Zur bequemeren Auswertung der Interferenzbilder wurde Gl. (6) für den infrage kommenden Bereich der Umgebungs-temperaturen und -drücke numerisch ausgewertet und tabelliert. So konnte jedem Interferenzstreifen z eine Temperatur T_z zugeordnet werden, wobei die gemessene Wandtemperatur des Innenzylinders als Ausgangstemperatur diente.

Der Temperaturgradient wurde aus den mit einem Mikroskop gemessenen Streifenabständen bestimmt. Die örtlichen Temperaturgradienten wurden in Schritten von je 30° am Umfang des Innenzylinders ermittelt. Daraus errechnete sich die örtliche Nusselt-Zahl am Innenzylinder nach der Gleichung

$$\text{Nu}_\delta = \left(\frac{\Delta T}{\Delta y}\right)_W \frac{\delta}{\Delta \theta}$$

(7),

wenn $(\Delta T/\Delta y)_W$ den gemessenen Temperaturgradienten an der Wand, δ die Spaltweite und $\Delta \theta$ den gesamten Temperaturunterschied zwischen Innen- und Aussenzylinder bedeuten. Die Bestimmung des Temperaturgradienten wurde dadurch erleichtert, dass in unserem Falle in der laminaren Grenzschicht die Temperatur in Wandnähe geradlinig verläuft (Wandbindung).

Die Grashof-Zahl ist in dieser Arbeit durch die Gleichung

$$\text{Gr}_\delta = g \beta_m \delta^3 \frac{\Delta \theta}{\nu_m^2}$$

(8)

definiert mit der örtlichen Fallbeschleunigung g, dem Ausdehnungskoeffizienten $\beta_m = 1/T_m$, berechnet mit der linearen Mitteltemperatur T_m im Spalt, der Spaltweite δ als der charakteristischen Länge und der kinematischen Viskosität ν_m, berechnet für T_m.
4. Versuchsergebnisse

Die nach den beschriebenen Methoden durch Integration über den Umfang des Innenzylinders erhaltenen mittleren Nusselt-Zahlen \((\text{Nu}_\delta)_m\) sind in Tafel 2 als Funktion der relativen Spaltweite \(\delta/d_1\) und der Grashof-Zahl \(Gr_\delta\) zusammengestellt. Die zugehörige Temperaturdifferenz \(\Delta \theta\) ist ebenfalls angegeben.

Tafel 2

<table>
<thead>
<tr>
<th>(\delta/d_1) = 0,15</th>
<th>(\delta/d_1) = 0,55</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Gr_\delta)</td>
<td>((\text{Nu}_\delta)_m)</td>
</tr>
<tr>
<td>0,0334 \cdot 10^4</td>
<td>1,1</td>
</tr>
<tr>
<td>0,0758</td>
<td>1,17</td>
</tr>
<tr>
<td>0,154</td>
<td>1,195</td>
</tr>
<tr>
<td>0,216</td>
<td>1,22</td>
</tr>
<tr>
<td>0,28</td>
<td>1,27</td>
</tr>
<tr>
<td>0,329</td>
<td>1,34</td>
</tr>
<tr>
<td>0,378</td>
<td>1,42</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(\delta/d_1) = 0,32</th>
<th>(\delta/d_1) = 0,73</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Gr_\delta)</td>
<td>((\text{Nu}_\delta)_m)</td>
</tr>
<tr>
<td>0,2</td>
<td>1,21</td>
</tr>
<tr>
<td>0,35</td>
<td>1,41</td>
</tr>
<tr>
<td>0,552</td>
<td>1,78</td>
</tr>
<tr>
<td>0,846</td>
<td>2,12</td>
</tr>
<tr>
<td>1,16</td>
<td>2,35</td>
</tr>
<tr>
<td>1,55</td>
<td>2,52</td>
</tr>
<tr>
<td>2,015</td>
<td>2,69</td>
</tr>
<tr>
<td>2,37</td>
<td>2,81</td>
</tr>
<tr>
<td>2,86</td>
<td>2,88</td>
</tr>
<tr>
<td>3,26</td>
<td>2,96</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(\delta/d_1) = 0,48</th>
<th>(\delta/d_1) = 1,08</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Gr_\delta)</td>
<td>((\text{Nu}_\delta)_m)</td>
</tr>
<tr>
<td>0,337</td>
<td>1,67</td>
</tr>
<tr>
<td>0,513</td>
<td>1,99</td>
</tr>
<tr>
<td>0,945</td>
<td>2,42</td>
</tr>
<tr>
<td>1,345</td>
<td>2,66</td>
</tr>
<tr>
<td>1,65</td>
<td>2,86</td>
</tr>
<tr>
<td>2,06</td>
<td>3,04</td>
</tr>
<tr>
<td>2,33</td>
<td>3,17</td>
</tr>
<tr>
<td>2,64</td>
<td>3,3</td>
</tr>
<tr>
<td>2,90</td>
<td>3,43</td>
</tr>
</tbody>
</table>
Tafel 2 (Fortsetzung)

\[
\frac{\delta}{d_i} = 1,45 \quad \frac{\delta}{d_i} = 2,65
\]

<table>
<thead>
<tr>
<th>(\text{Gr}_{\delta})</th>
<th>((\text{Nu}_{\delta})_m)</th>
<th>(\Delta \theta)</th>
<th>(\text{Gr}_{\delta})</th>
<th>((\text{Nu}_{\delta})_m)</th>
<th>(\Delta \theta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,74 \cdot 10^4</td>
<td>4,65</td>
<td>5,9 grd</td>
<td>15,4 \cdot 10^4</td>
<td>9,65</td>
<td>8,6 grd</td>
</tr>
<tr>
<td>3,03</td>
<td>5,2</td>
<td>10,5</td>
<td>23,4</td>
<td>10,65</td>
<td>14,1</td>
</tr>
<tr>
<td>3,63</td>
<td>5,43</td>
<td>13,0</td>
<td>40,2</td>
<td>12,1</td>
<td>25,6</td>
</tr>
<tr>
<td>5,42</td>
<td>5,77</td>
<td>20,6</td>
<td>49,7</td>
<td>12,79</td>
<td>33,7</td>
</tr>
<tr>
<td>7,11</td>
<td>6,34</td>
<td>28,6</td>
<td>60,6</td>
<td>13,33</td>
<td>44,0</td>
</tr>
<tr>
<td>9,07</td>
<td>6,68</td>
<td>39,5</td>
<td>68,3</td>
<td>13,60</td>
<td>53,0</td>
</tr>
<tr>
<td>10,9</td>
<td>6,96</td>
<td>51,5</td>
<td>71,6</td>
<td>13,81</td>
<td>59,8</td>
</tr>
<tr>
<td>11,7</td>
<td>7,07</td>
<td>57,4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
\frac{\delta}{d_i} = 1,95
\]

6,38	6,83	8,7
7,57	7,17	10,6
10,7	7,77	15,6
15,1	8,43	23,4
19,2	8,91	31,5
23,8	9,35	42,1
28,2	9,72	55,2

5. Folgerungen aus den Versuchsergebnissen

In Bild 5 sind die Ergebnisse dieser Arbeit zusammenge stellt; dort sind auch Versuchsergebnisse von Beckmann (3), Rechenergebnisse von Crawford und Lemlich (4) sowie eine von Liu, Mueller und Landis (5) angegebene Gleichung für den Parameter \(\frac{\delta}{d_i} = 0,55 \) eingetragen.

Die Übereinstimmung unserer Ergebnisse mit denen von Beckmann (3) und von Crawford und Lemlich (4) ist gut. Die etwas kleineren Wärmeübergangskoeffizienten von Beckmann gegenüber unseren Werten dürften dadurch zu erklären
Bild 5. Wärmeübergang in luftgefüllten waagerechten Ringspaltten \((Pr = 0,71)\).

sein, dass in der Apparatur von Beckmann nicht wie bei uns der äussere Zylinder auf konstanter Temperatur gehalten wurde, sondern Wärme durch freie Konvektion an die umgebende Luft abgab.

Von den berechneten Werten von Crawford und Lemlich (4) kann nur der Wert mit dem Parameter \(\delta/d_1 = 0,5\) unmittelbar mit unseren Werten verglichen werden. Der von uns an diesem Punkt des Diagramms gemessene Wärmeübergangskoeffizient liegt etwas höher infolge einer dreidimensionalen Konvektionsbewegung in diesem Bereich, der in Bild 5 als "Übergangsbereich" bezeichnet ist. Er wird im nächsten Abschnitt ausführlicher beschrieben.
Die vorliegenden Messungen stimmen nicht so gut mit einer von Liu, Mueller und Landis (4) angegebenen Gleichung überein, die einheitlich um etwa 20 % kleinere Werte ergibt. In Bild 5 ist diese Gleichung für $\delta/d_i = 0,55$ eingezeichnet.

Im Bereich der Grashof-Zahl Gr_δ von 30 000 bis 716 000 und für relative Spaltweiten δ/d_i von 0,55 bis 2,65 lassen sich unsere Messungen durch folgende Gleichung wiedergeben

$$ (Nu_\delta)_m = [0,2 + 0,145 (\delta/d_i)] Gr_\delta^{0,25} e^{-0,22 (\delta/d_i)} \quad (9) $$

Der berechnete Wert von Crawford und Lemlich (4) für $\delta/d_i = 28$ ist in Gl.(9) nicht enthalten. Weitere Messungen im Zwischenbereich sind erforderlich.

Bild 5 zeigt drei verschiedene Bereiche der Kurvenschar $(Nu_\delta)_m = f (Gr_\delta, \delta/d_i)$, nämlich

1. einen zweidimensionalen pseudo-konduktiven Bereich für $Gr_\delta < 2400$;
2. einen Übergangsbereich mit dreidimensionaler Konvektion für $2400 \leq Gr_\delta \leq 30000$;
3. einen Bereich mit völlig ausgebildeter zweidimensionaler laminarer Konvektion für $30000 \leq Gr_\delta \leq 716000$.

1. Der pseudokonduktive Bereich.

Gemäß Bild 5 ist die Nusselt-Zahl $(Nu_\delta)_m$ für $Gr < 2400$ im wesentlichen unabhängig von der Grashof-Zahl. Diese Tatsache wurde von Beckmann (3) so gedacht, dass in
diesem Bereich reine Wärmeleitung ohne Konvektion vorherrscht. Im Gegensatz dazu zeigen die Rauchversuche und die Interferenzbilder eine Konvektionsbewegung auch für Grashof-Zahlen unter 2 400. So verlaufen die Isothermen in Bild 6 für \(\text{Gr}_\delta = 450 \) leicht exzentrisch, während sie bei reiner Konduktion konzentrisch zum Ringspalt verlaufen müssten. Auch in Bild 7, in dem die Stromlinien durch Rauch sichtbar gemacht sind, ist Konvektion deutlich erkennbar.

\[\text{Bild 6. Interferenzbild der Pseudokonduktion.} \]
\[\text{Gr}_\delta = 0,45 \times 10^3; \Delta \theta = 5 \text{ grd; } \delta/d_1 = 0,15. \]

\[\text{Bild 7. Stromlinienbild der Pseudokonduktion.} \]
\[\text{Gr}_\delta = 0,47 \times 10^3; \Delta \theta = 4 \text{ grd; } \delta/d_1 = 0,158. \]

So scheint die Annahme berechtigt, dass die Konvektion nur dann erlischt, wenn die Temperaturdifferenz \(\Delta \theta \) und damit die Grashof-Zahl \(\text{Gr}_\delta \) den Wert Null erreichen. Das wird durch Bild 9 bestätigt, in dem die Nusselt-Zahlen für alle Winkel \(\varphi \) dem gleichen Wert für \(\Delta \theta \to 0 \) zustreben. Dieser Grenzwert entspricht der Nusselt-Zahl für reine
Wärmeleitung \((N_u)_{C} \), der in Bild 8 und 9 als gestrichelte Linie eingetragen ist.

Bild 8 und 9. Örtliche Nusselt-Zahl \(N_u \) am Innenrohr im Bereich der Pseudokonduktion (Beginn des Übergangs bereiches).

Auch Bild 10 zeigt deutlich den Einfluss der Konvektion, obwohl dort die Temperaturdifferenz sehr gering ist (1,2 grd). Natürlich kann bei dieser Aufnahme der Temperaturgradient an der Wand nicht bestimmt werden.
2. Der Übergangsbereich mit dreidimensionaler Konvektion.

Bild 10. Interferenzaufnahme bei größerer Spalteite und kleiner Temperaturdifferenz (Pseudokonduktion).
\[\text{Gr} \cdot = 0,096 \cdot 10^4; \]
\[\Delta \phi = 1,2 \text{ grd}; \; \delta/d_i = 0,48. \]

Bild 12. Strömungsbild des Übergangsbereiches, von oben aufgenommen. \[\text{Gr} \cdot = 5,1 \cdot 10^3; \]
\[\Delta \phi = 8 \text{ grd}; \; \delta/d_i = 0,28. \]
Bild 11. Schematische Skizze der Strömung im Übergangsbereich.

Bild 13. Strömungsbild des Übergangsbereiches, in radialer Richtung aufgenommen. $Gr_\theta = 5,1 \cdot 10^3$; $\Delta \theta = 8$ grd; $\delta/d_1 = 0,28$

Bild 14. Strömungsbild des Übergangsbereiches, schräg von oben aufgenommen. $Gr_\theta = 5,1 \cdot 10^3$; $\Delta \theta = 8$ grd; $\delta/d_1 = 0,28$

Bild 15. Strömungsbild des Übergangsbereiches in axialer Richtung aufgenommen. $Gr_\theta = 5,4 \cdot 10^3$; $\Delta \theta = 8,5$ grd; $\delta/d_1 = 0,28$
Bei höheren Grashof-Zahlen \(\text{Gr}_\delta \) des Übergangsbereiches oszillieren die Wirbelzentren in Umfangsrichtung. Wegen dieses Einsetzens der Instabilität bei kleineren Grashof-Zahlen und ihres Verschwindens bei höheren Grashof-Zahlen wird dieser Bereich der Übergangsbereich genannt. Er ist auf kleinere Werte der relativen Spaltweite \(\delta / d_1 \) beschränkt.

Die örtlichen Nusselt-Zahlen \(\text{Nu}_\delta \) erreichen ein Minimum bei \(\varphi = 150^\circ \) und ein Maximum bei \(\varphi = 180^\circ \), wie das Polardiagramm Bild 16 zeigt. In Bild 17 kann man die gleiche Erscheinung beobachten; dort ändern die Kurven für konstanten Winkel \(\varphi \) im Bereich der Grashof-Zahl 2 400 und 30 000 ihre Reihenfolge. Den Umkehrbeginn erkennt man aus Bild 9.

Bild 16 und 17. Örtliche Nusselt-Zahlen \(\text{Nu}_\delta \) am Innenzylinder im Übergangsbereich.
Die entsprechenden Interferenzbilder (Bild 18 und 19) ergeben einen Anstieg der Wärmeübertragung im oberen Winkelbereich und zeigen typische Änderungen im Isothermenfeld.

Bild 18. Interferenzbild des Übergangsbereiches.
\[\text{Gr}_\delta = 0,66 \cdot 10^3; \]
\[\Delta \theta = 8 \text{ grd}; \; \delta/d_i = 0,32 \]

\[\text{Gr}_\delta = 1,88 \cdot 10^4; \]
\[\Delta \theta = 26 \text{ grd}; \; \delta/d_i = 0,32 \]

Die Bilder 28 und 29 zeigen typische Verteilungen der örtlichen Nusselt-Zahl am Innenzylinder. Diese Verteilungen mit dem ausgeprägten Minimum bei 180° und Maximum bei 0° am unteren "Staupunkt" entsprechen den typischen Bedingungen des Wärmeübergangs am horizontalen beheizten Zylinder in ungestörter Strömung.

Anerkennung.

Die Verfasser danken den Herren Dipl.-Ing. A. Schönbeck und R. Woernle für ihre Mitwirkung bei den Versuchen.

Schrifttum

Bild 20. Interferenzbild der völlig ausgebildeten Konvektion.
\(\text{Gr}_\delta = 4,48 \cdot 10^4; \Delta \vartheta = 2,7 \text{ grd}; \)
\(\delta / d_i = 2,7 \)

\(\text{Gr}_\delta = 5,4 \cdot 10^4; \)
\(\Delta \vartheta = 3,0 \text{ grd}; \)
\(\delta / d_i = 2,5 \)

Bild 22. Interferenzbild bei völlig entwickelter Konvektion.
\(\text{Gr}_\delta = 2,1 \cdot 10^4; \Delta \vartheta = 5 \text{ grd}; \)
\(\delta / d_i = 0,55 \)

\(\text{Gr}_\delta = 1,2 \cdot 10^4; \)
\(\Delta \vartheta = 3 \text{ grd}; \)
\(\delta / d_i = 0,5 \)
Bild 24. Interferenzbild bei völlig entwickelter Konvektion.
\[\text{Gr}_\delta = 1,22 \cdot 10^5; \Delta \theta = 13 \text{ grad}; \]
\[\delta/d_1 = 1,08 \]

\[\text{Gr}_\delta = 1,2 \cdot 10^5; \Delta \theta = 14,5 \text{ grad}; \]
\[\delta/d_1 = 1,8 \]

\[\text{Gr}_\delta = 1,22 \cdot 10^5; \Delta \theta = 13 \text{ grad}; \]
\[\delta/d_1 = 1,8 \]

Bild 27. Stromlinienbild bei völlig entwickelter Konvektion.
\[\text{Gr}_\delta = 1,2 \cdot 10^5; \Delta \theta = 14,5 \text{ grad}; \]
\[\delta/d_1 = 1,0 \]
Bild 28 und 29. Örtliche Nusselt-Zahlen am Innenzyylinder bei völlig entwickelter Konvektion.