Verlauf einer Druckentlastung bei Rückspeisung abgeschiedener Flüssigkeit in den Kessel

Von F. Klug, S. Muschelknautz und F. Mayinger

1. Einleitung

2. Stand der Technik

Die Rückleitung muß durch eine Rückschlagklappe so lange gegen den Kessel abgedichtet werden, bis die Wiedereinspeicherung der abgeschiedenen Flüssigkeit erfolgen kann. Der Dampf strömt in der Verlängerung der Ausstrittsleitung zum Entlastungsventil. Dieses muß hinter dem Abscheider angeordnet werden, weil dort wegen der kritischen Durchströmung ein großer Druckabfall auftritt. Das Volumen des Sammelbehälters kann klein gehalten werden, wenn die Wiedereinspeicherung bereits zu einem möglichst frühen Zeitpunkt der Druckentlastung erfolgt. Das bedeutet entweder einen geringen Druckverlust oder eine große Höhendifferenz vom Reaktor bis zum Abscheider.

3.1 Aufbau der Versuchsanlage

Die Messungen wurden mit dem Kältemittel R12 durchgeführt. Das Versuchsfliud befindet sich anfangs im Druckentlastungsbekälter mit einem Volumen von 250 l und einem Durchmesser von 492 mm (Bild 1). Mit Hilfe eines elektrischen Heizfängers wird der Kesselinhalt auf den Abblasedruck von 17 bar (Sättigungstemperatur 65°C) aufgeheizt. Die Druckentlastung wird durch Öffnen eines pneumatisch gesteuerten Kugelhahns eingeleitet, der den gesamten Rohrleitungsquerschnitt NW 50 zwischen Kessel und Abscheider freigibt. Das austretende Gemisch strömt durch die Rohrleitung in den Umlenkab-
scheider, der in einem druckfesten Sammelbehälter untergebracht ist und sich bei Versuchsbeginn auf dem Druckniveau der Kältefalle von ca. 1 bar befindet.

Im Umlenkabscheider (Bild 2) strömt das Gemisch durch eine konische Erweiterung, die als zweiphasig durchströmter Diffusor einen gewissen Druckanstieg erzeugt und prallt dann gegen den Prallschirm. Aufgrund der Trägheit lagert sich die Flüssigkeit als Film am Prallschirm an und strömt nach außen ab. Am äußeren Prallschirmrand sind acht Störkörper angeordnet, die den Film in Strahlen zerteilen, so dass Durchströmflächen für den Dampf geschaffen werden. Dadurch wird der Trocknungsminit minimiert und gleichzeitig der Druckverlust für den Dampf verringert. Die Flüssigkeitstränen treffen unter einem Winkel von 45° auf die Behälterwand und werden dort durch gewundene Leitbleche in Rotation versetzt, um die Phasenseparation bei Nachverdampfung der abgeschiedenen Flüssigkeit zu verbessern. Der Abfluss erfolgt durch einen tangentialen Auslauf im Behältersumpf. Der Dampf verlässt den Sammelbehälter durch einen abgerundeten Übergang, strömt durch eine Blende zur Massenstrombegrenzung und kondensiert in einer Kältefalle.

Die Versuche wurden mit 2 Blendengrößen von 10 mm bzw. 30 mm Durchmesser durchgeführt, wobei einem Flächenverhältnis von Ausströmrohrleitung zu Strömungsquerschnitt in der Blende AA* von 30 bzw. 3 entspricht. Die Versuche von Muschelknaut haben gezeigt, dass der interessierende Geschwindigkeitsbereich mit den zwei oben genannten Blendengrößen abgedeckt wird.

Die abgeschiedene Flüssigkeit fließt abwärts und wird in der Rückleitung und dem zweischüssigen Auffangbehälter aufgestaut. Es ist vorteilhaft, den Sammelbehälter nur so groß zu wählen, dass die separierte Flüssigkeit gesammelt und abgeleitet werden kann. Das bis zur Wiedereinspeisung erforderliche Restspeichervolumen sollte vom angenommenen Auffangbehälter bereitgestellt werden, der – wie in Bild 1 eingezeichnet – unmittelbar oberhalb des Kessels angeordnet werden kann, wodurch die Aufstellung bedeutend vereinfacht wird. Am unteren Ende der Rückleitung befindet sich ein selbsttätiges Rückschlagventil, durch das die Flüssigkeit wieder in den Kessel zurückfließen kann. Um den Druckverlust bei der Schleunigung des Gemisches am Kesselaustritt zu minimieren, wurde dieser abgenutzt. Eine Kältetemperaturpumpe dient zur Umwälzung des Kesselinhalts und sorgt für eine homogene Temperaturverteilung im Kessel vor Versuchsbeginn.

3.2 Meßtechnik

3.3 Rückschlagventil

Bild 3: Vorrichtung zur Kesselwärmung mit Kompensation des Ausströmunimpulses

3.4 Massenstromverzweigung im Sammelbehälter

In der ersten Phase der Druckentlastung wird mehr Dampf aus dem Kessel ausgetragen als durch die Blende abströmen kann. Da sich der Sammelbehälter zu Versuchsbeginn auf Umgebungstemperatur befindet, kondensiert ein Teil des einströmenden Dampfes an der Behälterwand. Der restliche Anteil wird gespeichert und bewirkt so lange eine Druckerhöhung im Sammelbehälter, bis die zu- und abströmenden Volumenströme gleich groß sind. Die Verteilung der Massenströme im Sammelbehälter wird in Bild 5 veranschaulicht.

4. Versuchsergebnisse

Im folgenden werden die Versuchsergebnisse in geräffer Form vorgestellt. Eine vollständige Übersicht findet sich unter [6]. Die Versuche mit Wiedereinspeicherung wurden mit einem Füllgrad des Kessels von ca. 95 % durchgeführt. Der zeitliche Verlauf einer typischen Druckentlastung mit Wiedereinspeicherung ist anhand der Drücke im Kessel und Sammelbehälter sowie anhand des Kesselinhaltes in Bild 6 dargestellt.
4.1 Dampfmengenströme am Kesselaustritt und vor dem Abscheider

Der Dampfmengenstrom am Kesselaustritt setzt sich aus dem Anteil, der durch die Abkühlung der Flüssigkeit im Kessel gebildet wird, dem Anteil, der durch die aus der Kesselwand freigesetzte Wärme produziert wird sowie aus dem Anteil zusammen, der infolge von Volumen- und Dichteänderung im Kessel ge- bzw. entspeichert wird.

Die Summe der 3 Anteile ist als Dampfmengenstrom \(M_D \) am Kesselaustritt für Druckentlastungen mit Blendendurchmesser 30 bzw. 10 in Bild 7 gezeigt. Die Mengenströme weisen in den ersten Sekunden der Druckentlastung nahezu identischen Verlauf auf, da in dieser Phase der Sammelbehälter als Auffangkessel für das austretende Gemisch dient und die Blendengröße noch keinen Einfluß auf den Ausströmweg ausübt. Danach wird \(M_D \) bei der Blende \(\odot 30 \) deutlich größer als bei der Blende \(\odot 10 \). Der Unterschied ist jedoch nicht so groß, wie aufgrund des Flächenverhältnisses der Blenden zu erwarten wäre, da der Druck vor der Blende \(\odot 30 \) zu diesem Zeitpunkt bereits deutlich kleiner ist als bei Blende \(\odot 10 \). Die Dampfeinspeicherung im Sammelbehälter ist zu diesem Zeitpunkt nur noch von untergeordneter Bedeutung.

Der zunächst kontinuierlich ansteigende Dampfmengenstrom am Kesselaustritt geht je nach Blendengröße nach ca. 8 bis 11 Sekunden stark zurück. Zu diesem Zeitpunkt öffnet das Rückschlagventil und die zwischengesperrte Masse über den Kessel aufgestaut. Sobald sich das Rückschlagventil durch die Gewichtskraft der aufgestauten Flüssigkeitsmengen öffnet, beginnt der Wiedereinspeicherung und die Kesselmasse steigt allmählich wieder an.

Bild 5: Verteilung der Massenströme im Sammelbehälter

Bild 6: Zeitlicher Verlauf einer Druckentlastung mit Wiedereinspeicherung der abgeschiedenen Flüssigkeit

Bild 7: Zeitlicher Verlauf des Dampfmengenstroms am Kesselaustritt

490
Er beschreibt den Flüssigkeitsanteil der Zweiphasenströmung und wurde mit Hilfe der Massenbilanz am Kesselaustritt ermittelt. Bild 9 zeigt den Verlauf von \dot{x}_g während des zweiphasigen Austrags für zwei verschiedene Blendedurchmesser. Darüber hinaus ist auch der Verlauf des Strömungsmassendampfgehaltes \dot{x}_s vor dem Abscheider eingezeichnet. In den ersten Sekunden werden die Verläufe von \dot{x}_g und \dot{x}_s vom Blendedurchmesser nicht merklich beeinflußt. Dies deckt sich mit der bereits oben beschriebenen Beobachtung, daß im Anfangsstadium der Druckentlastung das Speichervermögen des Sammelbehälters eine dominierende Rolle spielt und ein Blenden einfuß nicht feststellbar ist.

Der Dampfgehalt vor dem Abscheider ist in den ersten Sekunden der Druckentlastung infolge der starken Nachverdampfung in der Rohrleitung deutlich größer als am Kesselaustritt. Mit abnehmender Differenz Während der Druckentlastung geht auch die Nachverdampfung zurück und \dot{x}_g geht in \dot{x}_s über. Je nach Blendedruckendend das zweiphasige Ausströmen nach 10 bis 12 s. Nachdem der Dampfgehalt den Wert Eins erreicht hat, bleibt am Kesselaustritt einphasiges Ausströmen bis zum Ende der Druckentlastung bestehen, obwohl der in Bild 7 gezeigte neuerliche Anstieg von M_D im Verlauf der Wieder einspeicherung auch einen erneuten Flüssigkeitsaustau vermuten lassen könnte. Eine Wiedereinspeicherung in zeitlichen Schüben konnte nicht beobachtet werden.

4.3 Abgeführter Dampfmenstrom

4.4. Druckverteilung in der Anlage

Der Druckabfall zwischen Kessel und Abscheideeintritt setzt sich aus 3 Anteilen zusammen: dem Druckabfall zur Beschleunigung des Gemischs am Kesselaustritt ΔP_{gas}, dem Druckabfall über der Rohrleitungsschleife zur Kompensation des Ausströmmimpulses bei der Behälterwärzung ΔP_{design} und dem Druckabfall über dem geraden Teil der Rohrleitung zwischen Kesselaustritt und Abscheider. Der
letzte Anteil besteht wiederum aus 3 Komponenten: der hydrostatischen Druckdifferenz des Gemisches Δp_{H2O}, dem Beschleunigungsdruckabfall infolge der Nachbardämpfung in der Rohrleitung Δp_{D} sowie dem Rohrdurchschnittsverlust Δp_{D}. Damit gilt die Beziehung:

$$p_0 - p_x - \Delta p_{Damp} = \Delta p_{ax} + \Delta p_{D} + \Delta p_{D} + \Delta p_A$$

(2)

4.4.1 Druckabfall am Kesselaustritt

Das im Kessel nahezu in Ruhe befindliche Gemisch wird am Kesselaustritt beim Übergang in die Rohrleitung stark beschleunigt. Der Verlauf des gemessenen Beschleunigungsdruckabfalls Δp_{ax} ist in Bild 11 gezeigt. Δp_{ax} hat den größten Wert zu Beginn der Druckentlastung, da dann die maximale Menge Dampf und Flüssigkeit ausge- tragen wird. Er fällt im weiteren Verlauf kontinuierlich ab.

Bei einem Anfängsfüllgrad von 95% liegt der mittlere volumetrische Dampfgehalt im Kessel zu Versuchsbeginn bei 5%. Dies führt dazu, daß anfangs fast nur Flüssigkeit ausgetragen wird und x_0 ebenfalls sehr gering ist. In den ersten Sekunden stellt die Flüssigkeit die umgebende Phase dar. Deshalb ist die Annahme berechtigt, daß das austretende Gemisch homogen beschleunigt wird und der Schluß zwischen den Phasen näherungsweise $s = 1$ ist, siehe auch [3, 7]. Somit läßt sich über die Definitionsgleichung für den volumetrischen Dampfgehalt ($e = V_d / (V_o + V_o)$)

$$e = \frac{1}{1 + \frac{1 - x_0}{x_0} \cdot \frac{s}{s}}$$

(3)

die mittlere Gemischdichte $\bar{\rho}$ am Kesselaustritt zu:

$$\bar{\rho} = (1 - e_0) \cdot \rho_r + e_0 \cdot \rho_0$$

(4)

bestimmen. Es wird davon ausgegangen, daß die Flüssigkeit als umgebende Phase bei der Beschleunigung auf ihrer Temperatur beharrt. Die Dampfentspannung in der Beschleunigungszone soll wegen der großen Phasengrenzfläche und wegen des guten Wärmeübergangs zwischen Dampf und Flüssigkeit näherungsweise ebenfalls isotherm erfolgen. Außerdem gilt das Gemisch mit einem maximalen Beschleunigungsdruckabfall von ca. 1,5 bar bei einem mittleren Absolutdruck von 12,5 bar in erster Näherung als inkompressibel angenommen. Damit ist die Bernoullische Energiegleichung anwendbar, wobei die kinetische Energie der beiden Phasen im Kessel vernachlässigt wird:

$$\Delta p_{ax} = \frac{e_0}{2} \cdot \rho_0^2$$

(5)

Die mittlere Gemischgeschwindigkeit \bar{v}_0 am Kesselaustritt wurde mit Hilfe der Kontinuitätsgleichung berechnet. Der mit Gl. 5 berechnete Verlauf von Δp_{ax} zeigt in den ersten Sekunden eine gute Übereinstimmung mit den Meßwerten (Bild 11). Im weiteren Verlauf liegen die Meßwerte jedoch über den berechneten Kurven. In diesem Bereich ist die Annahme homogener Strömung nicht mehr berechtigt, da jetzt der Dampf die umgebende Phase darstellt. Die Beschleunigung der Flüssigkeit geschieht jetzt durch Impulsübertragung vom Dampf. Bei der Umströmung der Flüssigkeitstropfen entstehen erhebliche Wärmeausnutzung durch Reibung, die in der Energiebilanz (Gl. 5) nicht berücksichtigt sind.

4.4.2 Reibungsdruckverlust in der Rohrleitung

Bild 12 zeigt den Verlauf des gemessenen Reibungsdruckverlustes, der bereits um den Beschleunigungsdruckabfall und die hydrostatische Druckdifferenz der Zweiphaseströmung korrigiert wurde. Der Druckverlust ist in den ersten Sekunden der Druckentlastung sehr groß, weil der kritische Strömungsschub in dieser Phase am Abscheideeintritt liegt und die Dampfgeschwindigkeit in der Rohrleitung sehr hoch ist. In der Folge fällt Δp jedoch rasch ab.

4.5 Flüssigkeitsverteilung in der Anlage

Der zeitliche Verlauf der Masse im Kessel während einer Druckentlastung mit Wiedereinspeicherung ist in Bild 13 für die Blendendurchmesser 10 und 30 gezeigt. Man erkennt, daß in der ersten Phase der Druckentlastung die Kurven nahezu identischen Verlauf aufweisen und die Blendengrößen keine Rolle spielt. Mit Blendendurchmesser 10 setzt nach ca. 8 s die Wiedereinspeicherung ein. Nach Beendigung der Wiedereinspeicherung ist wieder sehr viel Masse im Kessel vorhanden, da in der Zwischenzeit aufgrund des kleinen Blendendurchmessers nur relativ wenig Dampf durch die Blende abgeströmt ist.

Bei Druckentlastung mit Blende 30 setzt die Wiedereinspeicherung erst zu einem späteren Zeitpunkt ein, wenn bereits mehr Kesselinhalt ausgetragen worden ist und fast nur noch Dampf aus dem Kessel ausströmt. Bis zur vollständigen Wiedereinspeicherung ist durch den großen Blendendurchmesser relativ viel Dampf ausgeströmt und der Kesselfüllgrad liegt deutlich niedriger als bei kleiner Blende. Zum besseren Verständnis sind in Bild 13 auch die zeitlichen Verläufe der durch die Blende abgeströmt haben Menge M_{Damp} eingetragen. Die Differenz zwischen M_{Damp} und M_{Damp} wird durch die momentanen Dampf- und Wassermassen gebildet, die mit dem Dampf durch die Blende abgeströmt ist. Im Rahmen der Genauigkeit der Versuchsauwertung war der Anteil von M_{Damp} nicht maßgeblich und kann deshalb vernachlässigt werden.
Wie Muschelknausz [7] im Zusammenhang mit der Erprobung eines kesselinternen Umlaufsichters nachweist, liegt der Gesamtabscheidegrad über einer Druckentlastung

\[\eta_{ges} = \frac{M_{FAP}}{J \cdot M_{Vac}} \]

(12)

dann zwingend stets niedriger als der momentane Abscheidegrad

\[\eta' = \frac{M_{FAP}}{M_{Vac}} \]

(13)

Aus der Beobachtung \(M_{FAP} = 0 \) folgt, daß der Gesamtabscheidegrad \(\eta \) nahe bei 1 liegt und deshalb auch der momentane Abscheidegrad des Umklappabscheiders \(\eta' \) bei fast 100% liegen muß. Die eingangs getroffene Annahme von \(\eta' = 99\% \) ist in jedem Fall gerechtfertigt.

4.6 Beginn der Wiedereinspeicherung

Die Auslegung einer Druckentlastungsanlage zur Sicherung eines Kessels, in dem eine exotherme Reaktion abläuft, erfolgt nach der im Störfall abzuführenden Energieleistung. Durch die Art und Menge der verwendeten Reagenzien ergibt sich die Menge des abzuführenden Dampfmengestroms und damit auch die Blendengröße. Der Druckabfall in der Rohrleitung zwischen Kessel und Abscheider hängt von der Strömungsgeschwindigkeit und damit von der Rohrleitungsgrenze ab. Somit läßt sich die Grenze für eine mögliche selbsttätige Wiedereinspeicherung in einem A/A* über \(L_{s} \) Diagramm darstellen [3]. Wenn das Flächenverhältnis A/A* groß gewählt wird, herrscht in der Ausströmleitung eine geringe Dampfgeschwindigkeit. Dies führt zu einem relativ geringen Druckabfall und der Wiedereinspeicherung kann bereits zu einem früheren Zeitpunkt der Druckentlastung bei niedrigem Dampfgehalt \(x_{0} \) erfolgen.

Bild 14 zeigt die Maßwerte für den Beginn der selbsttätigen Wiedereinspeicherung. Um den Verlauf der Wiedereinspeicherungsgrenze besser darstellen zu können, wurden hierfür zusätzliche Versuchsreihen mit 2 weiteren Blendendurchmessern von 16 mm bzw. 22 mm ausgewertet.

Eine genaue Analyse der Druckmessungen zeigt, daß die Öffnung des Rückschlagventils erst bei einem Überdruck von etwa 0,35 bar zwischen Flüssigkeitssäule und Kessel erfolgt.

Der Grund hierfür liegt in der Konstruktion des Rückschlagventils. Der Ventileller wurde selbstschließend mit einer O-Ring-Dichtung ausgeführt. Im geschlossenen Zustand wird der O-Ring durch den Kesselüberdruck etwas flachgedrückt, so daß die Wirkungsflächen für den Kesseldruck und für den Druck der Flüssigkeitssäule verschieden groß sind. Da die Ventilöffnung jedoch bei Kräftetäuschung am Ventileller erfolgt, gilt die Bedingung

\[p_{Rus} \cdot A_{2} = p_{k} \cdot A_{1} \]

(14)

5. Zusammenfassung

schließenden Wiederanstieg infolge der Dampfverdrängung durch die eingespeicherte Flüssigkeit kommt es jedoch nicht zu einem erneuten Flüssigkeitsaustrag. Die Wiedereinspeicherung erfolgt kontinuierlich und wird erst mit dem vollständigen Rückfluß der abgeschiedenen Flüssigkeit in den Kessel beendet.

Schrifttum