Wissenschaftliche Forschungsarbeit

Tropfenmitriß und Flüssigkeitsverteilung bei Ringströmung von Gas/Flüssigkeits-Gemischen

Heinz Langner und Franz Mayinger*

Herrn Prof. Dr.-Ing. Richard Sinn zum 65. Geburtstag

Bei einer zweiphasigen Gas/Flüssigkeits-Strömung mit hohem Gas-
bez. Dampfan teil fließt ein Teil der Flüssigkeit in Form eines dünnen
Films an der Rohr wand, aus dem das schneller strömende Gas über
Schubspannungs- und Impulskräfte ständig Flüssigkeitstropfen
mitrißt, die sich dann stromabwärts wieder anlagern. Zur Beurtei-
lung von Wärme- und Stoffaustauschvorgängen, aber auch zur
Vorhersage des Druckverlustes in stationären Gas/Flüssigkeits-
Gemischen ist die Kenntnis der örtlichen und zeitlichen Phasenverteil-
vorgänge und der dabei auftretenden Platzwechselvorgänge von
vorrangiger Bedeutung.

Fotografische Aufnahmen der Strömung mit Hilfe der Hochge-
schwindigkeitskinematographie lieferten wertvolle Information
über die Struktur einer Zweiphasen-Ringströmung und bildeten die
Basis für die Erarbeitung theoretischer Ansätze zur Berechnung des
Tropfenmassenstroms.

Definiert man einen dimensionslosen Tropfenmassenstrom als das
Verhältnis von Tropfenmassenstrom M_{ENT} zu Gesamt-Flüssigkeits-
massenstrom $M_{ges}(1 - \tilde{x})$ (M_{ges} Gesamtmas senstrom, \tilde{x} Strömungs-
dampfgehalt), so erhält man durch Differenzieren der Gl. (1),

\[E = \frac{M_{ENT}}{M_{ges}(1 - \tilde{x})} \]

(1)

nach der Kanallänge z und durch Umstellung nach dem Gradienten
\[\frac{dM_{ENT}}{dz} \]

\[\frac{dM_{ENT}}{dz} = \frac{M_{ges}(1 - \tilde{x})}{d\tilde{x}} \frac{dE}{dz} - E \frac{M_{ges}}{d\tilde{x}} \frac{d\tilde{x}}{dz} \]

(2)

eine Möglichkeit zur Berechnung der Änderung des Tropfenmassen-
stroms über die Kanallänge, wenn eine Berechnung der Gradienten
dE/dz und $d\tilde{x}/dz$ gelingt.

\[\text{Abb. 2. Vergleich der Meßtechniken.} \]

Mit Hilfe einer Impulsbilanz für den Gaskern der Ringströmung,
s. Abb. 1, wobei die Bilanzgrenze an die Phasengrenzfläche zwischen
Dampf kern und Flüssigkeitsfilm gelegt wird, erhält man eine
Berechnungsgrundlage für den Gradienten dE/dz:

\[\frac{dE}{dz} = \left[- \frac{2 \tau_{L} \rho_{L} \frac{\delta p}{dz} + \frac{x}{\rho_{b}} \frac{E}{\rho_{f}} + \frac{E(1 - \tilde{x})}{\rho_{f}} \frac{g \delta_{0}}{\rho_{f}}}{(x + E(1 - \tilde{x})) \left(\frac{1 - \tilde{x}}{\rho_{f}} \right) + \left(\frac{\tilde{x}}{\rho_{b}} - \frac{E(1 - \tilde{x})}{\rho_{f}} \right) (1 - \tilde{x})} \right] \]

+ $\frac{d\tilde{x}}{dz} \frac{T_{1}}{T_{2}}$

(3)

(τ_{L}: Grenzflächenschubspannung, ρ Erdbeschleunigung, p System-
druck, r_{0} Rohrinnendurchmesser, r, Radius bei Flüssigkeitsfilmoberflächen).

Durch eine Energiebilanz über die beheizte Länge des Strömungskan-
als kann die Änderung des Dampfgehaltes über die Kanallänge
$d\tilde{x}/dz$ berechnet werden.

Ist nun der in einer Zweiphasenströmung auftretende Gesamtdruk-
verlust längs des Strömungskanals durch Messung oder durch
Berechnung mit einem der bekannten Modelle [1] bekannt, so kann
der Tropfenmassenstrom im Gaskern der Ringströmung berechnet
werden, wenn zusätzlich eine Möglichkeit zur Berechnung der
Grenzflächenschubspannungen existiert. Hierzu bietet sich ein
halbempirisches Modell von Ledy [2] an, das die Schubspannungen
auf der Basis der Prandtlschen Mischungsweges berechnet und

\[\text{Abb. 1. Impulsbilanz für den Gaskern einer Zweiphasen-Ringström-
ung mit Entrainment.} \]

* Dr.-Ing. H. Langner und Prof. Dr.-Ing. F. Mayinger, Institut für
Verfahrenstechnik der Technischen Universität Hannover, Cal-
linstr. 36, 3000 Hannover.
zusätzlich den Einfluß von Druck- und Schwerkraften auf die Verformung der Phasengrenzfläche berücksichtigt.

Zur experimentellen Absicherung der entwickelten Theorie wurden Messungen des Tropfenmassenstroms in beheizten Strömungen durchgeführt. Hierfür wurde eine optische Meßmethode gewählt, die es erlaubt, die Strömung in axialer Richtung zu beobachten und zu filmen. Der Vorteil, den diese Meßtechnik gegenüber der bisher häufig bei Strömungsformuntersuchungen angewandten Methode — die Strömung quer zur Strömungsrichtung zu fotografieren — bietet, ist in Abb. 2 demonstriert.

Der senkrechte Blick in die Strömung liefert sehr viel mehr Information über Tropfengröße und -verteilung als die Aufnahme quer zur Strömungsrichtung, die zur gleichen Zeit entstand.

Mit einer eigens für die axiale Strömungsfotografie entwickelten Auswertemethode gelingt die quantitative Bestimmung des Tropfenmassenstroms aus Hochgeschwindigkeitsfilmen oder einer Serie von Einzelaufnahmen.

Der Vergleich zwischen Messung und Rechnung zeigt sowohl für die eigenen Messungen mit dem Kältemittel R 12 als auch für Referenzwerte aus der Literatur mit Wasser/Wasser dampf-Gemischen befriedigende Ergebnisse [3].

Eingegangen am 25. April 1978

Schlüsselworte: Tropfenmassenstrom, Entrainment, Zweiphasenströmung, Ringströmung, Erhaltungssätze, optische Meßtechnik, Phasenverteilung.
